Gupta S D, Mekjian A Z, and Tsang M B. Liquid-gas phase transition in nuclear multifragmentation[J]. Advances In Nuclear Physics, 2001, 26:89.
[2]
Borderie B, Rivet M F. Nuclear multi-fragmentation and phase transition for hot nuclei. Progress in Particle and Nuclear Physics, 2008, 61:551-601.
[3]
Pochodzalla J, Mohlenkamp T, Rubehn T, et al. Pobing the nuclear liquid-gas phase transition[J]. Physical Review Letters, 1995, 75:1040.
[4]
Ma Y G, Siwek A, Peter J, et al. Surveying the nuclear cloric curve[J]. Physics Letters B, 1997, 390: 41-48
[5]
Natowitz J B, Hagel K, Ma Y G, et al. Has nucleonic matter at the critical point been produced in recent multi-fragmentation experiments?[J]. Physical Review Letters, 2002, 89: 212701
[6]
Gross D H E, Statistical decay of very hot nuclei: the production of large clusters[J]. Reports on Progress in physics, 1990, 53: 605.
[7]
Bondorf J P, Botvina A S, Llinov A S, et al. statistical multifragmentaion of nuclei[J]. Physics Report, 1995, 257:133-221
[8]
Gilkes M L, et al. Determination of critical exponents from the multifragmentation of gold nuclei[J]. Physical review letters, 1994, 73:1590
[9]
J. B. Elliottet al. Extraction of critical exponents from very small percolation lattices[J]. Physical Review C, 1994, 49: 3185;
[10]
Y. G. Ma. Application of information theory in nuclear liquid gas phase transition[J]. Physical Review Letters, 1999, 83: 3617
[11]
Fisher M E. Rigorous inequalities for critical-point correlation exponents[J]. Physical Review, 1969, 30: 615
[12]
Gulminelli F and D’Agostino M. Fluctuations of fragment observables[J]. The European Physical Journal A, 2006, 30: 253
[13]
Lopez O and Rivet M F. Bimodalities: A survey of experimental data and models[J]. The European Physical Journal A, 2006, 30: 263
[14]
Csernai L P, Kapusta J I and McLerran L D. On the strongly interacting low viscosity matter created in relativistic nuclear collisions[J]. Physical Review Letters, 2006, 97:152303
[15]
Kovtun P K, Son D T, Starinets A O. Viscosity in strongly interacting quantum field theories from black hole physics[J]. Physical Review Letters, 2005, 94: 111601
[16]
Policastro G, Son D T, Starinets A O, et all. The shear viscosity of strongly coupled N=4 super-symmetric Yang-Mills plasma[J]. Physical Review Letters, 2001, 87: 081601.
[17]
Demir D and Bass S A. Shear viscosity to entropy density ratio of a relativistic hadron gas[J]. Physical Review Letters, 2009, 102:172302.
[18]
Lacey R A et al. Has the QCD critical point been signaled by observations at RHIC?[J]. Physical Review Letters, 2007, 98: 092301.
[19]
Chen J W and Nakano E. Shear viscosity to entropy density ratio of QCD below the deconfinement temperature[J]. Physics Letters B, 2007, 647: 371
[20]
Kapusta J I and Springer T. Shear transport coefficients from Gauge/Gravity correspondence[J]. Physical Review D, 2008, 78:066017.
[21]
Majumder A, Muller B and Wang X N. Small shear viscosity of a quark-gluon plasma implies strong jet quenching[J]. Physical review letters, 2007, 99:192301.
[22]
Zhou C L, Ma Y G and Fang D Q et al. Ratio of shear viscosity to entropy density in multifragmentation of Au+Au[J]. Europhys Letters, 2011, 98:66003.
[23]
Zhou C L, Ma Y G and Fang D Q et al.
[24]
Thermodynamic properties and shear viscosity over entropy-density ratio of the nuclear fireball in a quantum-molecular dynamics model[J]. Physical Review C, 2013, 88:024604
[25]
Zhou C L, Ma Y G and Fang D Q et al. Shear Viscosity to Entropy Density Ratio in Au plus Au Central Collisions[J]. Plasma Science and Technology, 2012, 14:585-587
[26]
Li S X, Fang D Q , Ma Y G, et al. Shear viscosity to entropy density ratio in the Boltzmann-Uehling-Uhlenbeck model[J]. Physical Review C, 2011, 84:024607
[27]
Shi L and Danielewicz P. Nuclear isospin diffusivity[J]. Physical Review C, 2003, 68:064604.
[28]
Pal S. Shear viscosity to entropy density ratio of a relativistic Hagedorn resonance gas[J]. Physical Review C, 2010, 81:051601
[29]
N. Auerbach and S. Shlomo. η/s ratio in finite nuclei[J]. Physical Review Letters, 2009, 03:172501
[30]
Ma Y G, Wei Y B, Shen W Q, et al. Surveying the nucleon-nucleon momentum correlation function of the framework of quantum molecular dynamics model[J]. Physical review C, 2006, 73:01460 ; Wang J, Ma Y G, Zhang G Q, et all. Initial fluctuation effect on elliptic flow in Au+Au collisions at 1 GeV/A[J]. Nuclear Science and Technology, 2013, 24 :030501
[31]
Khoa D T, Ohtsuka N, Faessler A, et al. Microscopic study of thermal properties of the nuclear matter formed in heavy ion collisions[J]. Nuclear Physics A, 1992, 542:671
[32]
Khoa D T, Ohtsuka N, A. Faessler, et al. In medium effects in description of heavy ion collisions[J]. Nuclear Physics A, 1992, 548 :102
[33]
Kubo R. The fluctuation dissipation theorem[J]. Reports on Progress in Physics, 1966, 29 :255
[34]
Danielewicz P. Transport properties of excited nuclear matter and the shock wave profile[J]. Physics Letters B, 1984, 146:168.
[35]
Aichelin J. Quantum molecular dynamics : a dynamical microscopic n body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions[J]. Physics r\Reports, 1992, 202:233-360
[36]
Hartnack C, Puri R K, Aichelin J, et all. Modeling the many body synamics of heavy ion collisions : Present status and future perspective[J]. The European Physical Journal A, 1998, 1:151 -169
[37]
Hartnack C, Li Z X, Neise L, et all. Quantum molecular dynamics : a microscopic model from unilac to Cern energies[J]. Nuclear Physics A, 1989, 495:303c
[38]
Barranco M and Treiner J. Self-consistent description of nuclear level densities[J]. Nuclear Physics A, 1981, 351:269.
[39]
Rashdan M, Faessler A, Ismail M, et all. The temperature dependence of the Hi optical potential[J]. Nuclear Physics A, 1987, 468:168-176.
[40]
Barker B W and Danielewicz P. From stopping to viscosity in heavy ion collisisons[J]. AIP Conference Proceedings, 2010, 1231:167.
[41]
Zhang G Q, Ma Y G, Cao X G, et al. Unified description of nuclear stopping in central heavy ion collisions from 10A MeV to 1.2A GeV[J]. Physics Revew C, 2011, 84:034612.