Shen Qingbiao, Han Yinlu, and Guo Hairui. Isospin dependent nucleon-nucleus optical potential with Skyrme interactions[J]. Phys Rev C, 2009, 80(2): 024604.
[2]
Zhuo Yizhong, Shen Qingbiao, and Tian Ye. Microscopic theory of the nucleon optical potential with Skyrme interactions[J]. Advance in Science of China, 1985, Physics 1: 231.
[3]
Guo Hairui, Zhang Yue, and Han Yinlu et al.. Helium-3 microscopic optical model potential based on the Skyrme interaction[J]. Phys Rev C, 2009, 79(6): 064601.
[4]
Guo Hairui, Xu Yongli, and Han Yinlu et al.. Deuteron microscopic optical model potential[J]. Phys Rev C, 2010, 81(4): 044617.
[5]
Guo Hairui, Xu Yongli, and Han Yinlu et al.. 4He microscopic optical model potential[J]. Phys Rev C, 2011, 83(6): 064618.
[6]
Vautherin D and Brink D M. Hartree-Fock calculations with Skyrme''s interaction[J]. I. Spherical nuclei. Phys. Rev. C, 1972, 5(3): 626-647.
[7]
Beiner M, Flocard H, and Giai N V et al.. Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description[J]. Nucl. Phys. A, 1975, 238(1): 29-69.
[8]
Kohler H S. Skyrme force and the mass formula[J]. Nucl. Phys. A, 1976, 258(2): 301-316.
[9]
Krivine H, Treiner J, and Bohigas O. Derivation of a fluid-dynamical lagrangian and electric giant resonances[J]. Nucl. Phys. A, 1980, 336(2): 155-184.
[10]
Giai N V and Sagawa H. Spin-isospin and pairing properties of modified Skyrme interactions[J]. Phys. Lett. B, 1981, 106(5): 379-382.
[11]
Bartel J, Quentin P, and Brack M et al.. Towards a better parameterization of Skyrme-like effective forces: A critical study of the SkM force[J]. Nucl. Phys. A, 1982, 386(1): 79-100.
[12]
Chabanat E, Bonche P, and Haensel P et al.. A Skyrme parameterization from subnuclear to neutron star densities Part II. Nuclei far from stabilities[J]. Nucl. Phys. A, 1998, 635(1-2): 231-256.
[13]
Cao L G, U. Lombardo, and Shen C W. From Brueckner approach to Skyrme-type energy density functional[J]. Phys. Rev. C, 2006, 73(1): 014313
[14]
Krewald S, Klemt V, and Speth J. On the use of Skyrme forces in self-consistent RPA calculations[J]. Nucl. Phys. A, 1977, 281(2): 166-206
[15]
Pilipenko V V, Kuprikov V I, and Soznik A P. Skyrme interaction and elastic nucleon-nucleus scattering in the optical model[J]. Phys. Rev. C, 2010, 81(4): 044614.
[16]
Negele J. W. Structure of finite nuclei in the local-density approximation[J]. Phys. Rev. C, 1970, 1(4): 1260-1321.
[17]
Xu Yongli, Guo Hairui, and Han Yinlu. New Skyrme interaction parameters for a unified description of the nuclear properties[J]. J Phys G: Nucl Part Phys, 2014, 41(1): 015101.
[18]
Koning A J and Delaroche J.P. Local and global nucleon optical models from 1 keV to 200 MeV[J]. Nucl Phys A, 2003, 713(3-4): 231-310.
[19]
Perey F G, Love T.A and Kinney W E. 1972 ORNL Report ORNL-4823 (Oak Ridge, TN: Oak Ridge National Laboratory)
[20]
Abfalterer W P, Bateman F B, and Dietrich F.S. Measurement of neutron total cross sections up to 560 MeV[J]. Phys Rev C, 2001, 63(4): 044608.
[21]
Ibaraki M, Baba M, and Miura T et al.. Measurement of neutron non-elastic cross sections of C, Si, Fe, Zr and Pb in 40-80 MeV regions[J]. Nucl. Sci. Technol. Suppl., 2002, 2(8): 405-408.
[22]
A. I. Abramov. Measurement of the inelastic collision cross-sections of neutrons with nuclei of chromium, iron, nickel, niobium, and molybdenum at energies up to 2.6MeV. Journal of Atomic Energy, 1962, 12(1): 65-67.
[23]
Degtjarev J G and Nadtochij V G. Measurement of the cross section for inelastic interaction of neutrons with energy of 13-20 MeV using certain isotopes. Atomnuyu Energiya, 1961, 11(4): 397-410.
[24]
Degtjarev J G. Nonelastic cross section for neutrons with nuclei by 7Li, 12C, 14N, 27Al, 26Fe, Cu, Pb, 235,238U, and 239Pu. Journal of Atomic Energy, 1965, 19(4): 1426-1428.
[25]
Ibaraki M, Baba M, and Miura T et al.. Measurement of the differential elastic neutrons scattering cross section for carbon, silicon, iron, zirconium and lead in 55-75 MeV energy region at Takasaki Ion Accelerator for advanced radiation application. Nucl. Instr. Meth. A, 2000, 446(3): 536-544.
[26]
Olsson N, Trostell B, and Ramstroem E et al.. Microscopic and conventional optical model analysis of neutron elastic scattering at 21.6 MeV over a wide mass range. Nucl. Phys. A, 1987, 472(2): 237-268.
[27]
Schweitzer Th, Seeliger D, and Unholzer S. Elastic and inelastic scattering of 3.4 MeV neutrons by 23Na, 24Mg, 27Al, 28Si, 31P, 55Mn, 56Fe and 209Bi[R]. IAEA Report No. IAEA-190-2, 243, 1976.
[28]
El-Kadi R, Nelson C E, and Purser F O et al.. Elastic and inelastic scattering of neutrons from 54,56Fe and 63,65Cu: (I). Measurements from 8 to 14 MeV and a spherical optical model analysis[J]. Nucl. Phys. A, 1982, 390(3): 509-540.
[29]
Mellema S, Finlay R W, and F. S. Dietrich et al.. Microscopic and conventional optical model analysis of fast neutron scattering from 54,56Fe[J]. Phys. Rev. C, 1983, 28(6): 2267-2277.
[30]
Kinney W E. Neutron elastic and inelastic scattering from 56Fe from 4.60 to 7.55 MeV[R]. Oak Ridge National Laboratory Report No. TM-2052, 1968.
[31]
Ohrn A, Blomgren J, and Andersson P et al.. Elastic scattering of 96 MeV neutrons from iron, yttrium, and lead[J]. Phys. Rev. C, 2008, 77(2): 024605.
[32]
Stuart T P, Anderson J D, and Wong C. Elastic scattering of 24-MeV neutrons by Al, Fe, Sn, Bi[J]. Phys. Rev., 1962, 125(1): 276-279
[33]
Lam S T, Dawson W K, and Elbakr S A et al. Elastic scattering of polarized neutrons on 16O, 59Co, and Pb at 23 MeV[J]. Phys Rev C, 1985, 32(1): 76-82.
[34]
Annand J R M, Finlay R W and Dietrich P S. A low-energy optical-model analysis of 208Pb and 209Bi. Nucl. Phys. A, 1985, 443(2): 249-282.
[35]
Roberts M L, Felsher P D, and Weisel G J et al.. Measurement of Ay (θ) for n+208Pb from 6 to 10 MeV and the neutron-nucleus interaction over the energy range from bound states at 17 MeV up to scattering at 40 MeV. Phys. Rev. C, 1991, 44(5): 2006-2024.
[36]
Smith A B and Chiba S. Neutron scattering from elemental uranium and thorium[J]. Ann Nucl Eng, 1996, 23(6): 459-467.
[37]
申庆彪. 低能和中能核反应理论[M]. 北京: 科学出版社, 2005.
[38]
Shen Qingbiao. The nuclear reaction theory for the low and medium energies[M]. Beijing: Science Press, 2005.
[39]
Bell J S and Squires E J. A formal optical model[J]. Phys Rev Lett, 1959, 3(2): 96-97.
[40]
Li Z H and Lombardo U. Isovector component of the optical potential[J]. Phys. Rev. C, 2008, 78(4): 047603.
[41]
Shen Qingbiao, Zhang Jingshang, and Tian Ye et al.. Semi-microscopic optical potential calculation by the nuclear matter approach[J]. Z. Phys. A, 1981, 303(1): 69-83.