全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核技术  2014 

Skyrme力参数化描述核反应特性

DOI: 10.11889/j.0253-3219.2014.hjs.37.100504, PP. 100504-100504

Keywords: 中子微观光学势,Skyrme力参数,核反应性质,核物质性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过格林函数方法以及核物质近似得到基于有效核力的中子微观光学势,并通过定域密度近似得到靶核为有限核的中子微观光学势。在此基础上通过符合饱和点的核物质性质、Landau参数、双满壳核的结合能和电荷半径,以及入射能量在100MeV以下,中子与靶核质量数为24≤A≤209的核反应的总截面、去弹截面、弹性散射角分布和分析本领实验数据得到一套新的Skyrme力参数SkC。用得到的Skyrme力对入射能量在100MeV以下,中子与裂变核反应的数据进行了预言,理论计算结果能够比较好地符合实验数据。

References

[1]  Shen Qingbiao, Han Yinlu, and Guo Hairui. Isospin dependent nucleon-nucleus optical potential with Skyrme interactions[J]. Phys Rev C, 2009, 80(2): 024604.
[2]  Zhuo Yizhong, Shen Qingbiao, and Tian Ye. Microscopic theory of the nucleon optical potential with Skyrme interactions[J]. Advance in Science of China, 1985, Physics 1: 231.
[3]  Guo Hairui, Zhang Yue, and Han Yinlu et al.. Helium-3 microscopic optical model potential based on the Skyrme interaction[J]. Phys Rev C, 2009, 79(6): 064601.
[4]  Guo Hairui, Xu Yongli, and Han Yinlu et al.. Deuteron microscopic optical model potential[J]. Phys Rev C, 2010, 81(4): 044617.
[5]  Guo Hairui, Xu Yongli, and Han Yinlu et al.. 4He microscopic optical model potential[J]. Phys Rev C, 2011, 83(6): 064618.
[6]  Vautherin D and Brink D M. Hartree-Fock calculations with Skyrme''s interaction[J]. I. Spherical nuclei. Phys. Rev. C, 1972, 5(3): 626-647.
[7]  Beiner M, Flocard H, and Giai N V et al.. Nuclear ground-state properties and self-consistent calculations with the skyrme interaction: (I). Spherical description[J]. Nucl. Phys. A, 1975, 238(1): 29-69.
[8]  Kohler H S. Skyrme force and the mass formula[J]. Nucl. Phys. A, 1976, 258(2): 301-316.
[9]  Krivine H, Treiner J, and Bohigas O. Derivation of a fluid-dynamical lagrangian and electric giant resonances[J]. Nucl. Phys. A, 1980, 336(2): 155-184.
[10]  Giai N V and Sagawa H. Spin-isospin and pairing properties of modified Skyrme interactions[J]. Phys. Lett. B, 1981, 106(5): 379-382.
[11]  Bartel J, Quentin P, and Brack M et al.. Towards a better parameterization of Skyrme-like effective forces: A critical study of the SkM force[J]. Nucl. Phys. A, 1982, 386(1): 79-100.
[12]  Chabanat E, Bonche P, and Haensel P et al.. A Skyrme parameterization from subnuclear to neutron star densities Part II. Nuclei far from stabilities[J]. Nucl. Phys. A, 1998, 635(1-2): 231-256.
[13]  Cao L G, U. Lombardo, and Shen C W. From Brueckner approach to Skyrme-type energy density functional[J]. Phys. Rev. C, 2006, 73(1): 014313
[14]  Krewald S, Klemt V, and Speth J. On the use of Skyrme forces in self-consistent RPA calculations[J]. Nucl. Phys. A, 1977, 281(2): 166-206
[15]  Pilipenko V V, Kuprikov V I, and Soznik A P. Skyrme interaction and elastic nucleon-nucleus scattering in the optical model[J]. Phys. Rev. C, 2010, 81(4): 044614.
[16]  Negele J. W. Structure of finite nuclei in the local-density approximation[J]. Phys. Rev. C, 1970, 1(4): 1260-1321.
[17]  Xu Yongli, Guo Hairui, and Han Yinlu. New Skyrme interaction parameters for a unified description of the nuclear properties[J]. J Phys G: Nucl Part Phys, 2014, 41(1): 015101.
[18]  Koning A J and Delaroche J.P. Local and global nucleon optical models from 1 keV to 200 MeV[J]. Nucl Phys A, 2003, 713(3-4): 231-310.
[19]  Perey F G, Love T.A and Kinney W E. 1972 ORNL Report ORNL-4823 (Oak Ridge, TN: Oak Ridge National Laboratory)
[20]  Abfalterer W P, Bateman F B, and Dietrich F.S. Measurement of neutron total cross sections up to 560 MeV[J]. Phys Rev C, 2001, 63(4): 044608.
[21]  Ibaraki M, Baba M, and Miura T et al.. Measurement of neutron non-elastic cross sections of C, Si, Fe, Zr and Pb in 40-80 MeV regions[J]. Nucl. Sci. Technol. Suppl., 2002, 2(8): 405-408.
[22]  A. I. Abramov. Measurement of the inelastic collision cross-sections of neutrons with nuclei of chromium, iron, nickel, niobium, and molybdenum at energies up to 2.6MeV. Journal of Atomic Energy, 1962, 12(1): 65-67.
[23]  Degtjarev J G and Nadtochij V G. Measurement of the cross section for inelastic interaction of neutrons with energy of 13-20 MeV using certain isotopes. Atomnuyu Energiya, 1961, 11(4): 397-410.
[24]  Degtjarev J G. Nonelastic cross section for neutrons with nuclei by 7Li, 12C, 14N, 27Al, 26Fe, Cu, Pb, 235,238U, and 239Pu. Journal of Atomic Energy, 1965, 19(4): 1426-1428.
[25]  Ibaraki M, Baba M, and Miura T et al.. Measurement of the differential elastic neutrons scattering cross section for carbon, silicon, iron, zirconium and lead in 55-75 MeV energy region at Takasaki Ion Accelerator for advanced radiation application. Nucl. Instr. Meth. A, 2000, 446(3): 536-544.
[26]  Olsson N, Trostell B, and Ramstroem E et al.. Microscopic and conventional optical model analysis of neutron elastic scattering at 21.6 MeV over a wide mass range. Nucl. Phys. A, 1987, 472(2): 237-268.
[27]  Schweitzer Th, Seeliger D, and Unholzer S. Elastic and inelastic scattering of 3.4 MeV neutrons by 23Na, 24Mg, 27Al, 28Si, 31P, 55Mn, 56Fe and 209Bi[R]. IAEA Report No. IAEA-190-2, 243, 1976.
[28]  El-Kadi R, Nelson C E, and Purser F O et al.. Elastic and inelastic scattering of neutrons from 54,56Fe and 63,65Cu: (I). Measurements from 8 to 14 MeV and a spherical optical model analysis[J]. Nucl. Phys. A, 1982, 390(3): 509-540.
[29]  Mellema S, Finlay R W, and F. S. Dietrich et al.. Microscopic and conventional optical model analysis of fast neutron scattering from 54,56Fe[J]. Phys. Rev. C, 1983, 28(6): 2267-2277.
[30]  Kinney W E. Neutron elastic and inelastic scattering from 56Fe from 4.60 to 7.55 MeV[R]. Oak Ridge National Laboratory Report No. TM-2052, 1968.
[31]  Ohrn A, Blomgren J, and Andersson P et al.. Elastic scattering of 96 MeV neutrons from iron, yttrium, and lead[J]. Phys. Rev. C, 2008, 77(2): 024605.
[32]  Stuart T P, Anderson J D, and Wong C. Elastic scattering of 24-MeV neutrons by Al, Fe, Sn, Bi[J]. Phys. Rev., 1962, 125(1): 276-279
[33]  Lam S T, Dawson W K, and Elbakr S A et al. Elastic scattering of polarized neutrons on 16O, 59Co, and Pb at 23 MeV[J]. Phys Rev C, 1985, 32(1): 76-82.
[34]  Annand J R M, Finlay R W and Dietrich P S. A low-energy optical-model analysis of 208Pb and 209Bi. Nucl. Phys. A, 1985, 443(2): 249-282.
[35]  Roberts M L, Felsher P D, and Weisel G J et al.. Measurement of Ay (θ) for n+208Pb from 6 to 10 MeV and the neutron-nucleus interaction over the energy range from bound states at 17 MeV up to scattering at 40 MeV. Phys. Rev. C, 1991, 44(5): 2006-2024.
[36]  Smith A B and Chiba S. Neutron scattering from elemental uranium and thorium[J]. Ann Nucl Eng, 1996, 23(6): 459-467.
[37]  申庆彪. 低能和中能核反应理论[M]. 北京: 科学出版社, 2005.
[38]  Shen Qingbiao. The nuclear reaction theory for the low and medium energies[M]. Beijing: Science Press, 2005.
[39]  Bell J S and Squires E J. A formal optical model[J]. Phys Rev Lett, 1959, 3(2): 96-97.
[40]  Li Z H and Lombardo U. Isovector component of the optical potential[J]. Phys. Rev. C, 2008, 78(4): 047603.
[41]  Shen Qingbiao, Zhang Jingshang, and Tian Ye et al.. Semi-microscopic optical potential calculation by the nuclear matter approach[J]. Z. Phys. A, 1981, 303(1): 69-83.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133