全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核技术  2014 

Cu纳米团簇发光性能和结构的研究

DOI: 10.11889/j.0253-3219.2014.hjs.37.090104, PP. 90104-90104

Keywords: Cu纳米团簇,发光可调,X射线吸收精细结构(XAFS),同步辐射

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用光致发光谱(Photoluminescence,PL)、X射线吸收精细结构(X-rayAbsorptionFineStructure,XAFS)和MALDI-TOF质谱等技术研究了化学还原法合成的Cu金属纳米团簇的发光性能及其结构。PL谱表明随着反应溶液中十二硫醇(C12SH)和2-巯基-5-正丙烷基嘧啶(C7H10N2S,2-mercapto-5-n-propylpyrimidine,MPP)配体比例的增加,Cu纳米团簇主发光峰的波长从618nm逐渐蓝移到571nm。质谱的结果说明以MPP作为单一配体时的主要产物为Cu5[MPP]3;而当为MPP与C12SH两种混合配体时,Cu纳米团簇中Cu原子数变小,组成变为Cu4[MPP][C12SH];并且随着C12SH比例增加,Cu4[MPP][C12SH]产物的组成保持不变。XAFS结果则进一步表明随着C12SH比例的增加,Cu纳米团簇的Cu-S键长从0.228nm缩短到0.224nm,原子构型从双三角锥结构转变为四面体。综合以上结果,认为Cu纳米团簇的原子数的减少导致团簇的光致发光从618nm蓝移至597nm;而Cu-S键长的缩短引起Cu(I)-S杂化的HOMO-LUMO带隙增大,从而导致团簇的发光波长进一步从597nm蓝移至571nm。

References

[1]  1 Brust M, Walker M, Bethell D, et al. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System [J]. J. Chem. Soc., Chem. Comm., 1994, 7(?): 801-802
[2]  2 Dahl J A, Maddux B L S, Hutchison J E. Toward greener nanosynthesis [J]. Chem Rev, 2007, 107(6): 2228-2269
[3]  3 Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem Rev, 2004, 104(1): 293-346
[4]  4 Deheer W A. The Physics of Simple Metal-Clusters - Experimental Aspects and Simple-Models [J]. Reviews of Modern Physics, 1993, 65(3): 611-676
[5]  5 Gao Y, Shao N, Pei Y, et al. Catalytic Activities of Subnanometer Gold Clusters (Au-16-Au-18, Au-20, and Au-27-Au-35) for CO Oxidation [J]. Acs Nano, 2011, 5(10): 7818-7829
[6]  6 Kawasaki H, Yamamoto H, Fujimori H, et al. Surfactant-free solution synthesis of fluorescent platinum subnanoclusters [J]. Chem Commun, 2010, 46(21): 3759-3761
[7]  7 Rastogi S K, Denn B D, Branen A L. Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling [J]. J Nanopart Res, 2012, 14(1): 1-12
[8]  8 Wu Z W, Gayathri C, Gil R R, et al. Probing the Structure and Charge State of Glutathione-Capped Au-25(SG)(18) Clusters by NMR and Mass Spectrometry [J]. J Am Chem Soc, 2009, 131(18): 6535-6542
[9]  9 MacDonald M A, Zhang P, Chen N, et al. Solution-Phase Structure and Bonding of Au-38(SR)(24) Nanoclusters from X-ray Absorption Spectroscopy [J]. J Phys Chem C, 2011, 115(1): 65-69
[10]  10 Zhu M, Lanni E, Garg N, et al. Kinetically controlled, high-yield synthesis of Au-25 clusters [J]. J Am Chem Soc, 2008, 130(4): 1138-1139
[11]  11 Pei Y, Pal R, Liu C Y, et al. Interlocked Catenane-Like Structure Predicted in Au-24(SR)(20): Implication to Structural Evolution of Thiolated Gold Clusters from Homoleptic Gold(I) Thiolates to Core-Stacked Nanoparticles [J]. J Am Chem Soc, 2012, 134(6): 3015-3024
[12]  12 Chen W, Ghosh D, Sun J, et al. Dithiocarbamate-protected ruthenium nanoparticles: Synthesis, spectroscopy, electrochemistry and STM studies [J]. Electrochim Acta, 2007, 53(3): 1150-1156
[13]  13 Diez I, Ras R H A. Fluorescent silver nanoclusters [J]. Nanoscale, 2011, 3(5): 1963-1970
[14]  14 Vilar-Vidal N, Blanco M C, Lopez-Quintela M A, et al. Electrochemical Synthesis of Very Stable Photoluminescent Copper Clusters [J]. J Phys Chem C, 2010, 114(38): 15924-15930
[15]  15 Yuan X, Luo Z T, Zhang Q B, et al. Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer [J]. Acs Nano, 2011, 5(11): 8800-8808
[16]  16 Vazquez-Vazquez C, Banobre-Lopez M, Mitra A, et al. Synthesis of Small Atomic Copper Clusters in Microemulsions [J]. Langmuir, 2009, 25(14): 8208-8216
[17]  17 Salorinne K, Chen X, Troff R W, et al. One-pot synthesis and characterization of subnanometre-size benzotriazolate protected copper clusters [J]. Nanoscale, 2012, 4(14): 4095-4098
[18]  18 Wei W T, Lu Y Z, Chen W, et al. One-Pot Synthesis, Photoluminescence, and Electrocatalytic Properties of Subnanometer-Sized Copper Clusters [J]. J Am Chem Soc, 2011, 133(7): 2060-2063
[19]  19 Wu Z K, Jin R C. On the Ligand''s Role in the Fluorescence of Gold Nanoclusters [J]. Nano Lett, 2010, 10(7): 2568-2573
[20]  20 Lu Y Z, Wei W T, Chen W. Copper nanoclusters: Synthesis, characterization and properties [J]. Chinese Sci Bull, 2012, 57(1): 41-47
[21]  21 Lisiecki I, Billoudet F, Pileni M P. Control of the shape and the size of copper metallic particles [J]. J Phys Chem-Us, 1996, 100(10): 4160-4166
[22]  22 Murrie M, Collison D, Garner C D, et al. Synthesis, structure and magnetic properties of [Cu-5(bta)(6)L- (bta =benzotriazolate; L=beta-diketonate) Clusters [J]. Polyhedron, 1998, 17(17): 3031-3043
[23]  23 Duchesne P N, Zhang P. Local structure of fluorescent platinum nanoclusters [J]. Nanoscale, 2012, 4(14): 4199-4205
[24]  24 Forward J M, Bohmann D, Fackler J P, et al. Luminescence Studies of Gold (I) Thiolate Complexes [J]. Inorg Chem, 1995, 34(25): 6330-6336
[25]  25 Zheng J, Nicovich P R, Dickson R M. Highly fluorescent noble-metal quantum dots [J]. Annual Review of Physical Chemistry, 2007, 58(?): 409-431
[26]  26 Zhu M, Aikens C M, Hollander F J, et al. Correlating the crystal structure of a thiol-protected Au-25 cluster and optical properties [J]. J Am Chem Soc, 2008, 130(18): 5883-5885
[27]  27 Lee H M, Ge M F, Sahu B R, et al. Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation [J]. J Phys Chem B, 2003, 107(37): 9994-10005
[28]  28 Zheng J, Zhou C, Yu M X, et al. Different sized luminescent gold nanoparticles [J]. Nanoscale, 2012, 4(14): 4073-4083

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133