全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核技术  2015 

1500MHz5-cell超导腔的仿真优化

DOI: 10.11889/j.0253-3219.2015.hjs.38.060103, PP. 60103-60103

Keywords: 加速器,超导腔,高次模,模拟计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

能量回收直线加速器技术是近年来一项重要技术。针对能量回收直线加速器的主直线加速器,本文使用多种射频软件优化设计了一种新型的1500MHz5-cell超导腔。该腔加速模TM010的R/Q值达到550Ω,可以有效降低低温损耗。该腔的端cell采用扩大束管传输有害高次模方案将高次模传输出超导腔,良好地抑制了高次模。新腔型保持了较低的表面峰值场强与平均加速梯度的比值:Epk/Eacc=2.06,Bpk/Eacc=4.22mT/(MV?m?1),避免了场致发射的风险,并且在中等加速梯度区域(15?20MV?m?1)无二次电子倍增现象。模拟结果显示,该超导腔能够满足连续波、准连续波或高重复频率稳定运行的要求。

References

[1]  LIU JianFei, HOU HongTao, MAO DongQing, et al. Great progress in developing 500 MHz single cell superconducting cavity in China[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 169-173.
[2]  Liu J F, Hou H T, Mao D Q, et al. DEVELOPMENT OF SUPERCONDUCTING RADIO FREQUENCY CAVITIES AT SINAP[J]. Proceedings of IPAC 2012, 2012: 2248–2250.
[3]  YU Haibo, LIU Jianfei, HOU Hongtao, et al. Simulation of higher order modes and loss factor of a new type of 500-MHz single cell superconducting cavity at SSRF[J]. Nuclear Science and Techniques, 2011, 22(2):257-260.
[4]  LU Chang-Wang, LIU Jian-Fei, HOU Hong-Tao, et al. Design and simulation of a new type of 500 MHz single-cell superconducting RF cavity[J]. Chinese Physics C, 2012, 36(5): 447-451.
[5]  HOU Hong-Tao, MA Zhen-Yu, MAO Dong-Qing, et al. Studies of LL-type 500MHz 5-cell superconducting cavity at SINAP[R]. 2014.
[6]  WEI Yelong, LIU Jianfei, HOU Hongtao, et al. Design of large aperture 500 MHz 5-cell superconducting cavity[J]. Nuclear Science and Techniques, 2012, 23(2): 257-260.
[7]  MA Zhenyu, LIU Jianfei, HOU Hongtao, et al. Surface preparation processing for superconducting cavities[J]. Nuclear Science and Techniques, 2014, 25(2):060102.
[8]  Grassellino A, Romanenko A, Sergatskov D, et al. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures[J]. Superconductor Science and Technology, 2013, 26(10): 102001.
[9]  Sekutowicz J, Ko K, Ge L, et al. Design of a Low Loss SRF Cavity for the ILC[C]//Particle Accelerator Conference, 2005. PAC 2005. Proceedings of the. IEEE, 2005: 3342-3344.
[10]  Geng R L. Review of new shapes for higher gradients[J]. Physica C: Superconductivity, 2006, 441(1): 145-150.
[11]  TANG Zhengbo, LIU Jianfei, HOU Hongtao, et al. Frequency control and pre-turning of a large aperture 500 MHz 5-cell superconducting RF cavity[J]. Nuclear Science and Techniques, 2014, 25 (3):030102.
[12]  Mitsunobu S. Operation experience of superconducting cavities for KEKB[C]//Proceedings of the 10th workshop on RF superconductivity, Tsukuba, Japan. 2001.
[13]  LI Yong-Ming, ZHU Feng, QUAN Sheng-Wen, et al. The design of a five-cell high-current superconducting cavity [J]. Chinese Physics C, 2012, 36(1): 74-79.
[14]  Liepe M, Knobloch J. Superconducting RF for energy-recovery linacs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 557(1): 354-369.
[15]  Valles N, Liepe M. Seven-cell cavity optimization for Cornell’s energy recovery linac[C]//Proceedings of SRF. 2009, 2009.
[16]  Calaga R R. Linear beam dynamics and ampere class superconducting RF cavities@ RHIC[D]. Stony Brook University, 2006.
[17]  Galayda J. The LCLS-II project[C]//this conf. TUCA01. 2014.
[18]  Schneidmiller E A, Yurkov M V. Photon beam properties at the European XFEL[R]. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany), 2011.
[19]  Valles N. The main linac cavity for Cornell''s energy recovery linac: Cavity design through horizontal cryomodule prototype test[J]. Nuclear Instruments and Methods in Physics Research A, 2013, 734(2014):23-31.
[20]  王兴涛, 兰太和, 刘波等. 上海深紫外自由电子激光装置(SDUV-FEL)种子激光传输与注入系统[J]. 核技术, 2013, 36(5):050103.
[21]  WANG Xingtao, LAN Taihe, LIU Bo, et al. Seed laser transmission and injection system for the Shanghai Deep-Ultraviolet Free-Electron Laser test facility facility[J]. Nuclear Science and Techniques, 2013, 36(5):050103.
[22]  Aune B, Bandelmann R, Bloess D, et al. Superconducting TESLA cavities[J]. Physical Review Special Topics-Accelerators and Beams, 2000, 3(9): 092001.
[23]  Daly E F, Campisi I E, Henry J, et al. Improved prototype cryomodule for the CEBAF 12 GeV upgrade[C]//Particle Accelerator Conference, 2003. PAC 2003. Proceedings of the. IEEE, 2003, 2: 1377-1379.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133