LIU JianFei, HOU HongTao, MAO DongQing, et al. Great progress in developing 500 MHz single cell superconducting cavity in China[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 169-173.
[2]
Liu J F, Hou H T, Mao D Q, et al. DEVELOPMENT OF SUPERCONDUCTING RADIO FREQUENCY CAVITIES AT SINAP[J]. Proceedings of IPAC 2012, 2012: 2248–2250.
[3]
YU Haibo, LIU Jianfei, HOU Hongtao, et al. Simulation of higher order modes and loss factor of a new type of 500-MHz single cell superconducting cavity at SSRF[J]. Nuclear Science and Techniques, 2011, 22(2):257-260.
[4]
LU Chang-Wang, LIU Jian-Fei, HOU Hong-Tao, et al. Design and simulation of a new type of 500 MHz single-cell superconducting RF cavity[J]. Chinese Physics C, 2012, 36(5): 447-451.
[5]
HOU Hong-Tao, MA Zhen-Yu, MAO Dong-Qing, et al. Studies of LL-type 500MHz 5-cell superconducting cavity at SINAP[R]. 2014.
[6]
WEI Yelong, LIU Jianfei, HOU Hongtao, et al. Design of large aperture 500 MHz 5-cell superconducting cavity[J]. Nuclear Science and Techniques, 2012, 23(2): 257-260.
[7]
MA Zhenyu, LIU Jianfei, HOU Hongtao, et al. Surface preparation processing for superconducting cavities[J]. Nuclear Science and Techniques, 2014, 25(2):060102.
[8]
Grassellino A, Romanenko A, Sergatskov D, et al. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures[J]. Superconductor Science and Technology, 2013, 26(10): 102001.
[9]
Sekutowicz J, Ko K, Ge L, et al. Design of a Low Loss SRF Cavity for the ILC[C]//Particle Accelerator Conference, 2005. PAC 2005. Proceedings of the. IEEE, 2005: 3342-3344.
[10]
Geng R L. Review of new shapes for higher gradients[J]. Physica C: Superconductivity, 2006, 441(1): 145-150.
[11]
TANG Zhengbo, LIU Jianfei, HOU Hongtao, et al. Frequency control and pre-turning of a large aperture 500 MHz 5-cell superconducting RF cavity[J]. Nuclear Science and Techniques, 2014, 25 (3):030102.
[12]
Mitsunobu S. Operation experience of superconducting cavities for KEKB[C]//Proceedings of the 10th workshop on RF superconductivity, Tsukuba, Japan. 2001.
[13]
LI Yong-Ming, ZHU Feng, QUAN Sheng-Wen, et al. The design of a five-cell high-current superconducting cavity [J]. Chinese Physics C, 2012, 36(1): 74-79.
[14]
Liepe M, Knobloch J. Superconducting RF for energy-recovery linacs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 557(1): 354-369.
[15]
Valles N, Liepe M. Seven-cell cavity optimization for Cornell’s energy recovery linac[C]//Proceedings of SRF. 2009, 2009.
[16]
Calaga R R. Linear beam dynamics and ampere class superconducting RF cavities@ RHIC[D]. Stony Brook University, 2006.
[17]
Galayda J. The LCLS-II project[C]//this conf. TUCA01. 2014.
[18]
Schneidmiller E A, Yurkov M V. Photon beam properties at the European XFEL[R]. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany), 2011.
[19]
Valles N. The main linac cavity for Cornell''s energy recovery linac: Cavity design through horizontal cryomodule prototype test[J]. Nuclear Instruments and Methods in Physics Research A, 2013, 734(2014):23-31.
WANG Xingtao, LAN Taihe, LIU Bo, et al. Seed laser transmission and injection system for the Shanghai Deep-Ultraviolet Free-Electron Laser test facility facility[J]. Nuclear Science and Techniques, 2013, 36(5):050103.
[22]
Aune B, Bandelmann R, Bloess D, et al. Superconducting TESLA cavities[J]. Physical Review Special Topics-Accelerators and Beams, 2000, 3(9): 092001.
[23]
Daly E F, Campisi I E, Henry J, et al. Improved prototype cryomodule for the CEBAF 12 GeV upgrade[C]//Particle Accelerator Conference, 2003. PAC 2003. Proceedings of the. IEEE, 2003, 2: 1377-1379.