全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核技术  2015 

东昆仑哈日扎多金属矿区Ⅳ矿带成矿时代的锆石裂变径迹定年分析

DOI: 10.11889/j.0253-3219.2015.hjs.38.010502, PP. 10502-10502

Keywords: 裂变径迹分析,成矿时代,哈日扎多金属矿,东昆仑,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

裂变径迹核分析技术是成矿作用研究的新手段。哈日扎多金属矿区位于青海省东昆仑东段,属于东昆中多旋回岩浆弧带。矿区已识别出较大规模成矿带7条,成矿类型主要是构造蚀变岩型,成矿作用与岩浆活动关系密切。本文重点探讨其中Ⅳ矿带的成矿年龄。第Ⅳ成矿带由走向NW东支矿带和走向NE西支矿带构成。所获得的6个锆石裂变径迹年龄值变化于120?204Ma,并具有204Ma、153?168Ma和120Ma年龄组,这是本区新获得的年龄结果。结合矿区地质与区域热事件特征,认为这3组年龄是区内3期成矿作用的体现,其中东支矿带早期成矿时间比西支矿带早。同时,3期成矿事件也较好地反映了区内的构造活动。

References

[1]  Wagner G A, Haute P V D. Fission Track Dating[M]. Stuttgart: Ferdinand Enke Verlag, 1992.
[2]  Yamada R, Tagami T, Nishimura S, et al. Anealing kinetics of fis-sion tracks in zircon: an experimental study[J]. Chem Geol (Isotope Geoscience Section), 1995, 122: 249-258
[3]  Guedes S, Hadler J C, Iunes N P J, et al., Kinetic model for the annealingof fission tracks in zircon[J]. Radiation Measuement, 2005, 40: 517-521
[4]  Yuan Wanming, Mo Xuanxue, Zhang Aikui, et al. Fission Track Thermochronology Evidence for Multiple Periods of Mineralization in the Wulonggou Gold Deposits, Eastern Kunlun Mountains, Qinghai Province[J]. Journal of Earth Science, 2013, 24(4): 471-478.
[5]  陈小宁,袁万明,张爱奎,等. 东昆仑巴音郭勒地区锆石裂变径迹年代学:构造活动新证据[J]. 原子能科学技术,2014, 48(2): 378-384.
[6]  崔军文,张晓卫,唐哲民. 青藏高原的构造分区及其边界的变形构造特征[J],中国地质,2006,33(2): 556-567.
[7]  莫宣学,潘桂堂. 从特提斯到青藏高原形成:构造-岩浆事件的约束[J]. 地学前缘,2006, 13(6):43-51.
[8]  莫宣学,杨慧心,程立人等. 青藏高原地体构造的古地磁研究[M], 北京:地质出版社,1998,1-87.
[9]  王国灿,向树元,王岸,等. 东昆仑及相邻地区中生代-新生代早期构造过程的热年代学记录[J],地球科学--中国地质大学学报,2007,32(5): 605-680.
[10]  高军平,方小敏,宋春晖,等. 青藏高原北部中-新生代构造-热事件:来自柴西碎屑磷灰石裂变径迹的制约[J]. 地球科学:吉林大学学报,2011,41(5):1466-1475.
[11]  Jolivet M, Brunel M, Seward L J, et al. Mesozoic and Cenozoic tectonics of the northernedge of the Tibetan Plateau: fission-track constraints[J]. Tectonophysics, 2001, 343: 111- 134.
[12]  Liu Y J, Neubauer F, Genser J, et al. Geochronology of the initiation and displacement of the Altyn strike-slip fault, Western China[J]. Journal of Asian Earth Sciences, 2007, 29(2-3): 243-252.
[13]  韩英善,郭桂兰,张大明,等. 东昆仑东段哈日扎地区含矿斑岩特征及找矿潜力分析[J],西北地质,2012,45(1): 33-39.
[14]  罗照华,柯珊,曹永清,等. 东昆仑印支晚期幔源岩浆活动.地质通报[J],2002,21(6): 292-296.
[15]  马忠元,李良俊,周青禄,等. 东昆仑哈日扎斑岩型铜矿床特征及成因探讨[J],青海大学学报(自然科学版),2013, 31(3): 69-75.
[16]  宋忠宝,张雨莲,陈向阳,江磊,等. 东昆仑哈151扎含矿花岗闪长斑岩LA—ICP—MS锆石U—Pb定年及地质意义[J],矿床地质,2013,32(1): 157-168
[17]  Yuan W M, Bao Z K, Dong J Q, et al. Zircon and apatite fission track analyses on mineralization ages and tectonic activities of Tuwu-Yandong porphyry copper deposit in northern Xinjiang, China. Science in China Series D[J], 2007, 20(12): 1787-1795.
[18]  Bellemans F. Composition of SRM and CN U-doped glasses: significance for their use as thermal neutron fluence monitors in fission track dating[J]. Radiation measurements, 1995, 24(2): 153-160.
[19]  Hurford A J. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology[J]. Chemical Geology: Isotope Geoscience Section, 1990, 80(2): 171-178.
[20]  Green P F, Duddy I R, Gleadow A J W, et al. Thermal annealing of fission tracks in apatite: 1. A qualitative description[J]. Chemical Geology: Isotope Geoscience section, 1986, 59: 237-253.
[21]  Brandon, M T. Decomposition of fission-track grain-age distribution [J]. American Journal of Science, 1992, 292(8): 535-564.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133