全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

动态约束下可重构模块机器人分散强化学习最优控制

, PP. 1375-1384

Keywords: 自动控制技术,可重构模块机器人,强化学习,非线性最优控制,分散控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于ction-critic-identifier(ACI)与RBF神经网络,提出了一种外界动态约束下的可重构模块机器人分散强化学习最优控制方法,解决了存在强耦合不确定性的模块机器人系统的连续时间非线性最优控制问题。文中将机器人动力学模型描述为一个交联子系统的集合,基于连续时间MDPs性能指标,结合ACI与RBF神经网络,对子系统最优值函数,最优控制策略及总体不确定项进行辨识,使系统满足HJB方程下的最优条件,从而使可重构模块机器人子系统渐进跟踪期望轨迹,跟踪误差收敛且有界。采用Lyapunov理论对系统稳定性进行证明,数值仿真验证了所提出的分散控制策略的有效性。

References

[1]  Li Yuan-chun, Dong Bo. Decentralized ADRC control for reconfigurable manipulators based on VGSTA-ESO of sliding mode[J]. Information-an International Interdisciplinary Journal, 2012, 15(6): 2453-2465.
[2]  李英,朱明超,李元春.基于速度观测模型的可重构机械臂补偿控制[J].控制理论与应用,2008,25(5):891-897.Li Ying, Zhu Ming-chao, Li Yuan-chun. Velocity observer based compensator for motion control of a reconfigurable manipulator [J]. Control Theory & Applications, 2008, 25(5):891-897.
[3]  朱明超,李元春.可重构机械臂分散自适应模糊滑模控制[J].吉林大学学报:工学版,2009,39(1):170-176.Zhu Ming-chao, Li Yuan-chun. Decentralized adaptive sliding mode control for reconfigurable manipulators using fuzzy logic[J].Journal of Jilin University(Engineering and Technology Edition), 2009,39(1):170-176.
[4]  朱明超,李英,李元春.基于观测器的可重构机械臂分散自适应模糊控制[J].控制与决策,2009,24(3):429-434.Zhu Ming-chao, Li Ying, Li Yuan-chun. Observer-based decentralized adaptive fuzzy control for reconfigurable manipulator[J].Control and Decision, 2009, 24(3):429-434.
[5]  Xu Yan-kai, Cao Xi-ren. Lebesgue-sampling-based optimal control problems with time aggregation[J]. IEEE Transactions on Automatic Control, 2011, 56(5): 1097-1109.
[6]  Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control[J]. IEEE Circuits and Systems Magzine, 2009, 9(3): 32-50.
[7]  Xu Xin, He Han-gen, Hu De-wen. Efficient reinforcement learning using recursive least-squares methods[J]. Journal of Artificial Intelligence Research, 2002, 16: 259-292.
[8]  Lewis F L, Liu De-rong. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control[M]. New York: Wiley-IEEE Press, 2012.
[9]  Lewis F L, Syrmos V L. Optimal Control[M]. New York: John Wiley & Sons, Inc, 1995.
[10]  Sassano M, Astolfi A. Dynamic approximate solutions of the HJ inequality and of the HJB equation for input-affine nonlinear systems[J]. IEEE Transactions on Automatic Control, 2012, 57(10):2490-2503.
[11]  吴玉香,王聪. 基于确定学习的机器人任务空间自适应神经网络控制[J].自动化学报, 2013, 39(6): 806-815.Wu Yu-xiang, Wang Cong. Deterministic learning based adaptive network control of robot in task space[J]. Acta Automatica Sinica, 2013,39(6): 806-815.
[12]  Patre P M, MacKunis W, Kaiser K, et al. Asymptotic tracking for uncertain dynamic systems via a multilayer neural network feedforward and RISE feedback control structure[J]. IEEE Transactions on Automatic Control, 2008,53(9): 2180-2185.
[13]  Paden B, Sastry S. Calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators[J]. IEEE Transactions on Circuits Systems, 1987, 3(1):73-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133