全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非均匀噪声下基于BOOTSTRAP和特征空间投影的信源数估计

, PP. 1724-1730

Keywords: 信息处理技术,信源数检测,Bootstrap,特征空间投影,假设检验

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对阵列系统接收数据有限且存在空间非均匀噪声的信源数估计问题,提出一种基于Bootstrap和特征子空间投影的新方法。该方法将阵列信号的协方差矩阵分别投影到信号的特征子空间和噪声的特征子空间,提出了以特征空间投影为基础的一系列假设检验。数据分布未知,应用Bootstrap技术估计零假设下检测统计量的分布。通过仿真证明了所提方法在信源等功率、不等功率以及噪声功率不等的情况下有较好的性能,尤其在低信噪比和小快拍数的情况下有较好的性能。

References

[1]  Zoubir A M.Bootstrap methods for model selection[J]. International Journal of Electronics and Communications, 1999, 53(6):386-392.
[2]  Zoubir A M, Iskander D R. Bootstrap Techniques for Signal Processing[M]. Cambridge: Cambridge University Press, 2004.
[3]  Lawley D. Tests of significance for the latent roots of covariance and correlation matrices[J]. Biometrika, 1956, 43:128-136.
[4]  Chen W, Wong K M, Reilly J P. Detection of the number of signals: a predicted eigen-threshold approach[J]. IEEE Trans on Signal Processing, 1991, 39(5):1088-1098.
[5]  Wax M, Kailath T. Detection of signals by information theoretic criteria[J]. IEEE Transactions Acoustics Speech Signal Processing, 1985, 33(2):387-392.
[6]  Fishler E, Messer H. Order statistics approach for determining the number of sources using an array of sensors[J]. IEEE Signal Processing Letter, 1999, 6:179-182.
[7]  Huang L, So H C. Source enumeration via MDL criterion based on linear shrinkage estimation of noise subspace covariance matrix[J]. IEEE Transactions on Signal Processing, 2013, 61(19):4806-4821.
[8]  Lu Z H, Zoubir A M. Source enumeration using the PDF of sample eigenvalues via information theoretic criteria[C]∥IEEE International Conference on Acoustics Speech Signal Processing, Kyoto, Japan, 2012, 2:3361-3364.
[9]  Pesavento M, Gershman A B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2001, 49(7):1310-1324.
[10]  Wu H T, Yung J F, Chen F K. Source number estimator using gerschgorin disks[J]. International Conference on Acoustics Speech Signal Processing, Adelaide Australia, 1994, 4(4):261-264.
[11]  Wu H T, Yung J F, Chen F K. Source number estimator using transformed gerschgorin radii[J]. IEEE Transactions On Signal Processing, 1995, 43(6):1325-1333.
[12]  Yung J F, Wu H T. Gerschgorin radii based source number detection for closely spaced signals [C]∥IEEE Transactions Acoustics Speech Signal Processing, Atlanta May,1996:3054-3057.
[13]  Gu J F, Wei P, Tai H M. Detection of the number of sources at low signal-to-noise ratio[C]∥IET Signal Processing,2007, 1(1):2-8.
[14]  Zoubir A, Boashash B. The bootstrap and its application in signal processing[C]∥IEEE Signal Processing Magazine, 1998, 1:55-76.
[15]  Politis D. Computer-intensive methods in statistical analysis[J]. IEEE Signal Processing Magazine,1998, 1:39-55.
[16]  Aouada S, Zoubir A M, See C M S. Source detection in the presence of nonuniform noise[C]∥IEEE International Conference on Acoustics Speech Signal Processing, Montreal, Canada, 2004, 2:165-168.
[17]  Scharf L L. Statistical Signal Processing: Detection, Estimation and Time Series Analysis[M]. Addison Wesley, 1990.
[18]  Zoubir A, Iskander D. Bootstrap Techniques for Signal Processing[M]. Cambridge: Cambridge University Press, 2004.
[19]  Aouada S, Transkov D, Heureuse N, et al. Application of the bootstrap to source detection in Nonuniform noise[C]∥IEEE International Conference on Acoustics Speech Signal Processing, Pennsylvania, USA, 2005, 4:997-1000.
[20]  Brcich R, Zoubir A M, Pelin P. Detection of sources using bootstrap techqiques[J]. IEEE Transactions on Signal Processing, 2002, 50(2):206-215.
[21]  Eforn B, Tibshirani R. An Introduction to the Bootstrap[M]. London:Chapman&Hall, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133