全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超冗余多轴液压振动台的内力耦合控制

, PP. 1461-1467

Keywords: 流体传动与控制,超冗余振动台,内力耦合,电液伺服系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统多轴振动台内力耦合控制策略控制参数复杂、控制效果差的缺点,提出一种基于变形位移和变形力空间的内力耦合控制策略。给出超冗余振动台电液伺服系统的非线性方程及机械部分的单刚体动力学模型,在内力耦合空间分析的基础上,通过内力合成矩阵对合成内力进行闭环反馈补偿,由冗余变形分解矩阵将补偿量分配到各液压伺服阀的输入端。仿真结果显示该算法能有效降低超冗余液压振动台的液压缸出力及耦合内力。

References

[1]  Tagawa Y, Kajiwara K. Controller development for the E-Defense shaking table[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2007, 221(2):171-181.
[2]  Plummer A R. A general coordinate transformation framework for multi-axis motion control with applications in the testing industry[J]. Control Engineering Parctice,2010, 18(6):598-607.
[3]  Saglia J A, Tsagarakis N G, Dai J S, et al. Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2009,223(1):53-70.
[4]  关广丰,熊伟,王海涛,等. 6自由度电液振动台控制策略研究[J]. 振动与冲击,2010,29(4):200-203. Guan Guang-feng, Xiong Wei, Wang Hai-tao, et al. Control strategy of a 6-DOF hydraulic shaker[J]. Journal of Vibration and Shock, 2010,29(4):200-203.
[5]  Underwood Marcos A, Keller Tony. Applying coordinate transformations to multi-DOF shaker control[J]. Sound and Vibration,2006, 40(1):22-27.
[6]  袁立鹏,崔淑梅,卢红影,等.基于定理反馈理论迭代学习的液压角振动台控制策略[J].吉林大学学报:工学版,2011,41(3):676-682. Yuan Li-peng,Cui Shu-mei,Lu Hong-ying,et al.QFT iteration-learning based control strategy of hydraulic angular vibration table[J].Journal of Jilin University(Engineering and Technology Edition),2011,41(3):676-682.
[7]  Shen Gang, Zhu Zhen-cai, Zhang Lei, et al. Adaptive feed-forward compensation for hybrid control with acceleration time waveform replication on electro-hydraulic shaking table[J]. Control Engineering Practice,2013, 21(8):1128-1142.
[8]  Severn R T. The development of shaking tables—A historical note[J]. Earthquake Engineering and Structural Dynamics,2011, 40(2):195-213.
[9]  Plummer A R. A detailed dynamic model of a six-axis shaking table[J]. Journal of Earthquake Engineering,2008, 12(4):631-662.
[10]  何景峰,李保平,佟志忠,等.液压驱动冗余振动台自由度控制及内力协调[J]. 振动与冲击, 2011, 30(3):74-78. He Jing-feng, Li Bao-ping, Tong Zhi-zhong, et al. DoF control and inner force balancing of hydraulically redundant actuated shaking table[J]. Journal of Vibration and Shock,2011, 30(3): 74-78.
[11]  Jiang Hong-zhou, He Jing-feng, Tong Zhi-zhong. Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator[J].Mechanism and Machine Theory,2010, 45(5):722-739.
[12]  Chen Yi-xin, Mclnroy John E. Decoupled control of flexure-jointed hexapods using estimated joint-space mass-inertia matrix[J]. IEEE Transactions on Control Systems Technology,2004, 12(3):413-421.
[13]  Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equation of the general Stewart platform through the Newton-Euler approach[J]. Mechanism and Machine Theory,1998, 33(7):993-1012.
[14]  Jiang Hong-zhou, He Jing-feng, Tong Zhi-zhong. Modal space control for a hydraulically driven Stewart platform[J]. Journal of Control Engineering and Technology, 2012, 2(3):106-115.
[15]  Merritt H E. Hydraulic Control Systems[M]. New York: John Wiley & Sons, 1967.
[16]  Li H R. Hydraulic Control Systems[M]. Beijing:National Defense Industry Press, 1990.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133