全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应和小波模极大值重构的地面核磁共振信号噪声压制方法

, PP. 1642-1651

Keywords: 通信技术,核磁共振,干扰滤除,自适应滤波,小波模极大值重构滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对核磁共振信号中的噪声,在二进小波变换基本原理的基础上,研究了小波模极大值重构方法,将该方法与自适应滤波方法相结合应用到含噪声信号的干扰滤除中,通过分析包络信号拟合后的初始振幅、平均衰减时间和相位等数据可知,含噪声信号经自适应和小波模极大值重构方法滤波处理后拟合得到的特征参数误差最小且信噪比得到最大的提高。同时,通过实测数据得知采用自适应和小波模极大值重构方法进行噪声滤波后的结果与钻孔结果的一致性较好,验证了本文所提方法的有效性。

References

[1]  Legchenko A, Baltassat J M, Bobachev A, et al. Magnetic resonance sounding applied to aquifer characterization[J]. Ground Water, 2004, 42(3): 363-373.
[2]  Legchenko A, Baltassat, J M, Beauce A, et al. Nuclear magnetic resonance as a geophysical tool for hydrogeologists[J]. Journal of Applied Geophysics, 2002, 50 (1):21-46.
[3]  Müller-Petke M, Hiller T, Herrmann R, et al. Reliability and limitations of surface NMR assessed by comparison to borehole NMR[J]. Near Surface Geophysics, 2011, 9(2): 123-134.
[4]  Vouillamoz J M, Legchenko A, Nandagiri L. Characterizing aquifers when using magnetic resonance sounding in a heterogeneous geomagnetic field[J]. Near Surface Geophysics, 2011,9(2): 135-144.
[5]  Juan Plata, Felix Rubio. MRS experiments in a noisy area of a detrital aquifer in the south of Spain[J]. Journal of Applied Geophysics, 2002, 50(1):83-94.
[6]  Jiang C D, Lin J, Duan Q M, et al. Statistical stacking and adaptive notch filter to remove high-level electromagnetic noise from MRS measurements[J]. Near Surface Geophysics, 2011, 9(5):459-468.
[7]  Konstantinos Chalikakis, Mette Ryom Nielsen, Anatoly Legchenko. MRS applicability for a study of glacial sedimentary aquifers in Central Jutland, Denmark[J]. Journal of Applied Geophysics, 2008, 66(3):176-187.
[8]  Trushkin D V, Shushakov O A, Legchenko A V. The potential of a noise-reducing antenna for surface NMR groundwater surveys in the earth's magnetic field[J]. Geophysical Prospecting, 1994, 42(8): 855-862.
[9]  Anatoly Legchenko, Pierre Valla. A review of the basic principles for proton magnetic resonance sounding measurements[J]. Journal of Applied Geophysics, 2002, 50(1):3-19.
[10]  Legchenko A, Valla P. Processing of surface proton magnetic resonance signals using non-linear fitting[J]. Journal of Applied Geophysics, 1998, 39(2): 77-83.
[11]  Legchenko A, Valla P. Removal of power-line harmonics from proton magnetic resonance measurements[J]. Journal of Applied Geophysics, 2003, 53(2): 103-120.
[12]  Legchenko A. MRS measurements and inversion in presence of EM noise[J]. Boletín Geológico y Minero, 2007, 118(3): 489-508.
[13]  Walsh D O. Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations[J]. Journal of Applied Geophysics, 2008, 66(3): 140-150.
[14]  田宝凤, 段清明. 核磁共振信号工频谐波的自适应滤除方法[J]. 吉林大学学报:信息科学版, 2009,27(3):223-228. Tian Bao-feng, Duan Qing-ming. Removal method of industrial frequency harmonics in nuclear magnetic resonance signal based on adaptive filter[J]. Journal of Jilin University (Information Science Edition), 2009, 27(3):223-228.
[15]  田宝凤, 林君, 段清明, 等. 基于参考线圈和变步长自适应的磁共振信号噪声压制方法[J]. 地球物理学报, 2012, 55(7):2462-2472. Tian Bao-feng, Lin Jun, Duan Qing-ming, et al. Variable step adaptive noise cancellation algorithm for magnetic resonance sounding signal with a reference coil[J]. Chinese Journal of Geophysics, 2012, 55(7):2462-2472.
[16]  曾亮,李振宇,王鹏.小波分析在提高核磁共振找水信号信噪比中的应用探讨[J]. CT 理论与应用研究, 2007, 15(2):1-5. Zeng Liang, Li Zhen-yu, Wang Peng. Improveing S/N ratio of MRS signal of detecting ground water with wavelet analysis[J]. CT Theory and Applications, 2007, 15(2):1-5.
[17]  Strehl S, Rommel I, Hertrich M, et al. New strategies for filtering and fitting of MRS signals[C]∥Proc Proceedings 3rd International MRS Workshop, Madrid, Spain, 2006:65-68.
[18]  Abdullah Al Jumah. Denoising of an image using discrete stationary wavelet transform and various thresholding techniques[J]. Journal of Signal and Information Processing, 2013, 4(1):33-41.
[19]  Nair S S, Joseph K P. Wavelet based electroretinographic signal analysis for diagnosis[J]. Biomedical Signal Processing and Control, 2014(9):37-44.
[20]  张金榜, 孙艺笑, 王润典, 等. 改进的阈值函数去噪算法[J]. 电子科技,2014, 27(2):17-20. Zhang Jin-bang, Sun Yi-xiao, Wang Run-dian, et al. An improved threshold denoising algorithm[J]. Electronic Science and Technology, 2014, 27(2):17-20.
[21]  李文刚, 张振勇, 王艳波, 等. 小波分析在矿井高密度电法数据处理中的应用[J]. 中国煤炭地质, 2011,23(6):52-55. Li Wen-gang, Zhang Zhen-yong, Wang Yan-bo, et al. Application of wavelet analysis in coalmine high-density electric prospecting data processing[J]. Coal Ceology of China, 2011, 23(6):52-55.
[22]  Sun S, Yang N, Lin J, et al. Adaptive analysis of filter methods for magnetic resonance sounding[C]∥In Digital Manufacturing and Automation (ICDMA), IEEE, 2013:106-111.
[23]  秦毅, 王家序, 毛永芳. 基于软阈值和小波模极大值重构的信号降噪[J]. 振动测试与诊断, 2011, 31(5): 543-547. Qin Yi, Wang Jia-xu, Mao Yong-fang. Based on soft threshold and wavelet modulus maxima reconstruction signal noise reduction[J]. Journal of Vibration, Measurement & Diagnosi, 2011, 31(5): 543-547.
[24]  何永红,文鸿雁,靳鹏伟. 基于小波模极大值改进算法的变形模型研究[J]. 测绘科学, 2007, 32(4):18-20. He Yong-hong, Wen Hong-yan, Jin Peng-wei. Deformation of the improved algorithm based on wavelet modulus maxima model research[J]. Science of Surveying and Mapping, 2007, 32(4):18-20.
[25]  Strehl S. Development of strategies for improved filtering and fitting of SNMR-Signals[D]. Berlin: Department of Applied Geophysics Diplomarbeit,Institute of Applied Geosciences, Technical University of Berlin, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133