全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于最小二乘支持向量机的混合动力挖掘机负载功率预测

, PP. 133-138

Keywords: 动力机械工程,混合动力挖掘机,功率匹配,泵功率预测,最小二乘支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现液压挖掘机并联式混合动力总成与负载功率的精确匹配,在对变量泵工作原理分析的基础上,提出基于最小二乘支持向量机(LS-SVM)算法的双联式恒功率变量泵功率预测模型。以液压挖掘机实际挖掘作业时采集的载荷谱作为训练样本,以泵出口压力、负流量控制压力和极限载荷控制压力作为训练模型的输入,以泵的排量作为输出建立模型,从而使模型对于作业环境具有更好的适用性。用网格搜索和交叉验证的方法对LS-SVM的参数进行了优化,研究结果表明该模型具有良好的预测精度和泛化能力。

References

[1]  Kagoshima M, Sora T, Komiyama M. Development of hybrid power train control system for excavator[C]∥JSAE Annual Congress, 2003: 1-6.
[2]  Akira T, Takao N, Hideaki Y,et al. Development of the electro hydraulic actuator system on hybrid excavator[C]∥JSAE Annual Congress, 2003: 7-12.
[3]  Naoki S, Takao N, Etsujiro I, et al, Swing system development of construction machinery[C]∥JSAE Annual Congress, 2004: 7-12.
[4]  Takao N, Etsujiro I, Masayuki K. Power simulation on the actual operation in hybrid excavator[C]∥JSAE Annual Congress, 2003: 13-18.
[5]  沈黎. 混合动力挖掘机[J]. 交通世界, 2009(8): 34-37.Shen Li. Hybrid excavator[J]. Transportation World, 2009(8): 34-37.
[6]  肖清,王庆丰,张彦廷,等. 液压挖掘机混合动力系统建模及控制策略研究[J]. 浙江大学学报:工学版,2007,41(3):480-483,528.Xiao Qing, Wang Qing-feng, Zhang Yan-ting, et al. Study on modeling and control strategy of hybrid system in hydraulic excavator[J]. Journal of Zhejiang University (Engineering Science), 2007,41(3):480-483,528.
[7]  Lin X, Pan S X, Wang D Y. Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator[J]. Journal of Zhejiang University (Science A), 2008, 9(5): 624-632.
[8]  王冬云,管成,潘双夏,等. 液压挖掘机功率匹配与动力源优化综合控制策略[J]. 农业机械学报, 2009,40(4): 91-95.Wang Dong-yun, Guan Cheng, Pan Shuang-xia, et al. Control strategy of power matching and power sources optimization for hydraulic excavator[J]. Transactions of the Chinese Society for Agriculture Machinery, 2009,40(4): 91-95.
[9]  马吉恩,徐兵,杨华勇. 轴向柱塞泵流动特性理论建模与试验分析[J]. 农业机械学报, 2010,41(1): 188-194.Ma Ji-en, Xu Bing, Yang Hua-yong. Modeling and experiment study on fluid character of axial piston pump[J]. Transactions of the Chinese Society for Agriculture Machinery, 2010,41(1): 188-194.
[10]  张万军. 柱塞泵总功率与负流量控制分析[D]. 成都:西南交通大学, 2010.Zhang Wan-jun. Total horsepower and negative flow control analysis[D]. Chengdu: Southwest Jiaotong University, 2010.
[11]  王克龙. 双联轴向柱塞泵流量特性的研究[D]. 哈尔滨:哈尔滨工业大学, 2011.Wang Ke-long. Flow characteristics of double compound axial piston pump[D]. Harbin: Harbin Institute of Technology, 2011.
[12]  陈闻,孙康. 负流量恒功率变量泵建模及系统特性分析[J]. 现代制造工程, 2012(4):101-105.Chen Wen, Sun Kang. The characteristic analysis of the negative and constant power pup[J]. Modern Manufacturing Engineering, 2012(4):101-105.
[13]  Vapnik V. The Nature of Statistical Learning Theory[M]. NewYork: Springer-Verlag, 1995: 15-38.
[14]  Vapnik V. Statistical Learning Theory[M]. NewYork:John Wiley,1998.
[15]  王旭辉,黄圣国,曹力,等. 基于LS-SVM的航空发动机气路参数趋势在线预测[J]. 吉林大学学报:工学版,2008, 38(1): 239-244.Wang Xu-hui, Huang Sheng-guo, Cao Li, et al. LS-SVM based online trend prediction of gas path parameters of aero engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(1): 239-244.
[16]  陈健美,钱承,李玉强,等. 基于LS-SVM的混合动力镍氢电池组SOC预测[J]. 中南大学学报:自然科学版,2013,44(1): 135-139.Chen Jian-mei, Qian Cheng, Li Yu-qiang, et al. SOC prediction of MH/Ni battery in hybrid vehicle based on LS-SVM[J]. Journal of Central South University(Science and Technology), 2013,44(1): 135-139.
[17]  Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999,9(3): 293-300.
[18]  Suykens J A K, Branbanter J D, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation[J]. Neurocomputing, 2002,48:85-105.
[19]  刘祥楼,贾东旭,李辉,等. 说话人识别中支持向量机核函数参数优化研究[J]. 科学技术与工程,2010,10(7): 1669-1673.Liu Xiang-lou, Jia Dong-xu, Li Hui, et al. Research on kernel parameter optimization of support vector machine in speaker recognition[J]. Science Technology and Engineering, 2010,10(7):1669-1673.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133