全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数据分布的快速灰关联分析

, PP. 283-290

Keywords: 计算机应用,灰理论,正态灰数,灰关联度,灰关联分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

从灰关联分析中最核心的灰关联度构造及相应的挖掘算法出发,结合正态分布的普适性,提出了一种体现数据分布特点的正态灰数,并给出了相应的灰度及灰关联度计算方法。在此基础上,构建了一种多粒度无监督的快速灰聚类方法,无需先验知识即可完成自动聚类。通过实验验证了本文方法的有效性,为大数据下灰关联分析的进一步发展提供了新思路。

References

[1]  邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社,2002: 1-46.
[2]  Liu S F, Hu M L, Yang Y J. Progress of grey system models[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29(2): 103-111.
[3]  Wei G W. Grey relational analysis method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information[J]. Expert Systems with Applications, 2011, 38(5): 4824-4828.
[4]  Hamzaebi C, Pekkaya M. Determining of stock investments with grey relational analysis [J]. Expert Systems with Applications, 2011, 38(8): 9186-9195.
[5]  Wei G W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making[J]. Expert Systems with Applications, 2011, 38(9): 11671-11677.
[6]  吴利丰, 刘思峰. 基于灰色凸关联度的面板数据聚类方法及应用[J]. 控制与决策, 2013, 28(7): 1033-1036. Wu Li-feng, Liu Si-feng. Panel data clustering method based on grey convex relation and its application[J]. Control and Decision, 2013, 28(7): 1033-1036.
[7]  李鹏, 刘思峰. 基于灰色关联分析和 DS 证据理论的区间直觉模糊决策方法[J]. 自动化学报, 2011, 37(8): 993-998. Li Peng, Liu Si-feng. Interval-valued intuitionistic fuzzy numbers decision-making method based on grey incidence analysis and D-S theory of evidence[J]. Acta Automatica Sinica, 2011, 37(8): 993-998.
[8]  李鹏,刘思峰,方志耕. 基于灰色关联分析和 MYCIN 不确定因子的区间直觉模糊决策方法[J]. 控制与决策, 2012, 27(7): 1009-1014.Li Peng,Liu Si-feng,Fang Zhi-geng.Interval-valued intuitionistic fuzzy numbers decision-making method based on grey incidence analysis and MYCIN certainty factor[J].Control and Decision,2012,27(7):1009-1014.
[9]  菅利荣, 刘思峰. 面向集合论的灰度定义及灰色粗糙集模型建立[J]. 控制与决策, 2013, 28(5): 721-725.Jian Li-rong, Liu Si-feng. Definition of grey degree in set theory and construction of grey rough set models[J]. Control and Decision, 2013, 28(5): 721-725.
[10]  王翯华, 朱建军, 方志耕. 基于灰色关联度的多阶段语言评价信息集结方法[J]. 控制与决策, 2013, 28(1): 109-114. Wang He-hua, Zhu Jian-jun, Fang Zhi-geng. Aggregation of multi-stage linguistic evaluation information based on grey incidence degree[J]. Control and Decision, 2013, 28(1): 109-114.
[11]  刘思峰,党耀国,方志耕,等. 灰色系统理论及其应用[M].5版.北京:科学出版社, 2010.
[12]  张岐山, 秦洪. 灰数灰度的一个新定义[J]. 大庆石油学院学报, 1996, 20(1): 89-92. Zhang Qi-shan, Qin Hong. New definition of grey number’s grade[J]. Journal of Northeast Petroleum University, 1996, 20(1): 89-92.
[13]  Thadewald T, Büning H. Jarque–Bera test and its competitors for testing normality–a power comparison[J]. Journal of Applied Statistics, 2007, 34(1): 87-105.
[14]  Lilliefors H W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown[J]. Journal of the American Statistical Association, 1967, 62(318): 399-402.
[15]  Box G E R, Cox D R. An analysis of transformations[J]. Journal of the Royal statistical Society: Series B, 1964, 26(2):221-252.
[16]  Farnum Nicholas R. Using Johnson curves to describe non-normal process data[J]. Quality Engineering, 1996, 9(2): 329-336.
[17]  Bandalos. Reliability generalization of working alliance inventory scale scores[J]. Educational and Psychological Measurement, 2002,62(4): 659-673.
[18]  Efron B, Tibshirani R. An Introduction to the Bootstrap[M]. New York: CRC Press, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133