Babuska I, Yu D H. Asymptotically exact a-posteriori error estimator for biquadratic elements[J].Finite Elements in Analysis and Design, 1987, 3: 341-354.
[2]
Feng K, Yu D H. Canonical integral equations of elliptic boundary value problems and theirnumerical solutions. Proceedings of China-France Symposium on the Finite Element Method,Science Press, Beijing, 1983, 211-252.
[3]
余德浩. 自然边界元方法的数学理论[M]. 北京: 科学出版社, 1993,27-53.
[4]
Monegato G. Numerical evaluation of hypersingular integrals[J]. J. Comput. Appl. Math., 1944,50: 9-31.
[5]
Linz P. On the approximate computation of certain strongly singular integrals[J]. Computing,1985, 35: 345-353.
[6]
Wu J M, Sun W. The superconvergence of the composite trapezoidal rule for Hadamard finitepart integrals[J]. Numer. Math., 2005, 102: 343-363.
[7]
Zhang X P, Wu J M, Yu D H. The superconvergence of the composite Newton-Cotes rules forHadamard finite-part integral on a circle[J]. Computing, 2009, 85: 219-244.
[8]
Li J, Wu J M, Yu D H. Generalized extrapolation for computation of hypersingular integrals inboundary element methods[J]. Comp. Model. Engng. Sci., 2009, 42: 151-175.
[9]
Wu J M, Sun W W. The superconvergence of Newton-Cotes rules for the Hadamard finite-partintegral on an interval[J]. Numer. Math., 2008, 109: 143-165.
[10]
Elliott D, Venturino E. Sigmoidal transformations and the Euler-Maclaurin expansion for evaluatingcertain Hadamard finite-part integrals[J]. Numer. Math., 1997, 77: 453-465.
Guiggiani M, Casalini P. Direct computation of Cauchy principle value integral in advanced boundaryelements[J]. Int. J. Numer. Meth. Engng, 1987, 24: 1711-1720.
[13]
Guiggiani M, Kyishnasamy G, Rudolphi T J, Rizzo F J. General algorithm for numerical solutionof hypersingular oundary integral equation[J]. ASME J. Appl. Mech., 1992, 29: 604-614.
[14]
Tanaka M, Sladek V, Sladek J. Regularization techniques applied to BEM[J]. Appl. Mech. Review,1994, 47: 457-499.