全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2013 

用正交函数求超奇异积分的近似值及其误差估计

, PP. 215-224

Keywords: 超奇异积分,Hadamard有限积分,Fourier级数,Legendre多项式,最小二乘法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于Hadamard有限部分积分定义,当密度函数是多项式、正弦函数和余弦函数时,本文推导出了计算超奇异积分准确值的公式,进而利用这些公式给出了密度函数为一般连续函数的超奇异积分近似值的计算方法.本文还对近似值进行了误差分析,据此可以在事先给定的误差下来计算超奇异积分的近似值.最后将前面的理论应用到超奇异积分方程求近似解的问题.数值算例表明该方法的可行性和有效性.

References

[1]  Babuska I, Yu D H. Asymptotically exact a-posteriori error estimator for biquadratic elements[J].Finite Elements in Analysis and Design, 1987, 3: 341-354.
[2]  Feng K, Yu D H. Canonical integral equations of elliptic boundary value problems and theirnumerical solutions. Proceedings of China-France Symposium on the Finite Element Method,Science Press, Beijing, 1983, 211-252.
[3]  余德浩. 自然边界元方法的数学理论[M]. 北京: 科学出版社, 1993,27-53.
[4]  Monegato G. Numerical evaluation of hypersingular integrals[J]. J. Comput. Appl. Math., 1944,50: 9-31.
[5]  Linz P. On the approximate computation of certain strongly singular integrals[J]. Computing,1985, 35: 345-353.
[6]  Wu J M, Sun W. The superconvergence of the composite trapezoidal rule for Hadamard finitepart integrals[J]. Numer. Math., 2005, 102: 343-363.
[7]  Zhang X P, Wu J M, Yu D H. The superconvergence of the composite Newton-Cotes rules forHadamard finite-part integral on a circle[J]. Computing, 2009, 85: 219-244.
[8]  Li J, Wu J M, Yu D H. Generalized extrapolation for computation of hypersingular integrals inboundary element methods[J]. Comp. Model. Engng. Sci., 2009, 42: 151-175.
[9]  Wu J M, Sun W W. The superconvergence of Newton-Cotes rules for the Hadamard finite-partintegral on an interval[J]. Numer. Math., 2008, 109: 143-165.
[10]  Elliott D, Venturino E. Sigmoidal transformations and the Euler-Maclaurin expansion for evaluatingcertain Hadamard finite-part integrals[J]. Numer. Math., 1997, 77: 453-465.
[11]  陈一呜, 仪明旭等. Legendre小波求解超奇异积分[J]. 计算数学,2012, 34(2): 195-202. 浏览
[12]  Guiggiani M, Casalini P. Direct computation of Cauchy principle value integral in advanced boundaryelements[J]. Int. J. Numer. Meth. Engng, 1987, 24: 1711-1720.
[13]  Guiggiani M, Kyishnasamy G, Rudolphi T J, Rizzo F J. General algorithm for numerical solutionof hypersingular oundary integral equation[J]. ASME J. Appl. Mech., 1992, 29: 604-614.
[14]  Tanaka M, Sladek V, Sladek J. Regularization techniques applied to BEM[J]. Appl. Mech. Review,1994, 47: 457-499.
[15]  李金, 余德浩. 牛顿科茨公式计算超奇异积分的误差估计[J]. 计算数学, 2011, 33(1): 77-86. 浏览
[16]  周民强. 数学分析习题演练[M]. 北京: 科学出版社, 2010, 400.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133