Li D Y, Chen G N. Introduction of Difference Methods for Parabolic Equations[M]. Science Press (in Chinese), Beijing, 1995.
[2]
Shashkov M, Steinberg S. Solving diffusion equations with rough coefficients in rough grids[M]. J. Comput. Phys., 1996, 129:383-405.
[3]
Aavatsmark I. An introduction to multipoint flux approxmations for quadrilateral grids[J]. Computational Geosciences, 2002, 6:405-432.
[4]
Lipnikov K, Manzini G, Svyatskiy D. Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems[J]. Journal of Computational Physics, 2011, 230:2620-2642.
[5]
Nordbotten J M, Aavatsmark I and Eigestad G T. Monotonicity of control volume methods, Numer. Math. 2007, 106:255-288.
[6]
Nordbotten J M and Eigestad G T. Discretization on quadrilateral grids with improved monotonicity[J]. J. Comput. Phys., 2005, 203:744-760.
[7]
Le Potier C. Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes[J]. C. R. Acad. Sci. Paris, Ser. I 2005, 341:787-792.
[8]
Lipnikov K, Shashkov M, Svyatskiy D, and Vassilevski Yu. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[J]. J. Comput. Phys., 2007, 227:492-512.
[9]
Yuan G W, Sheng Z Q. Monotone finite volume schemes for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2008, 227:6288-6312.
Sheng Z, Yue J, Yuan G. Monotone finite volume schemes of no equilibrium radiation diffusions on distorted meshes[J]. SIAM J Sci Comput, 2009, 31:2915-2934.
[12]
Sheng Zhiqiang, Yuan Guangwei. An improved monotone finite volume scheme for diffusion equation on polygonal meshes[J]. Journal of Computational Physics, 2012, 231(9):3739-3754.
[13]
Gao Zhiming, Wu Jiming. A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitary 2D and 3D meshes[J]. J. Comput. Phys., 2013, 250:308-331.
[14]
Nikitin K, Vassilevski Yu. A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D[J]. Russ. J. Numer. Anal. Math. Modelling, 2010, (25):335-358.
[15]
Agelas L, Eymard R, Herbin R. A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media[J]. C.R. Acad. Sci. Paris Ser., 2009, 347:673-676.
[16]
Chang Lina, Yuan Guangwei. An efficient and accurate reconstruction algorithm for the formulation of cell-centered diffusion schemes[J]. Journal of Computational Physics, 2012, 231:6935-6952.
[17]
Milad Fatenejad, Gregory A. Moses, Extension of Kershaw diffusion scheme to hexahedral meshes[J]. Journal of Computational Physics, 2008, 227:2187-2194.
[18]
Hang Xudeng, Sun W, Ye C. Finite volume solution of heat and moisture transfer through three-dimensional textile materials[J]. Computer and Fluids, 2012, 57:25-39.