全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2015 

三维多面体网格上扩散方程的保正格式

, PP. 247-263

Keywords: 多面体网格,保正格式,调和平均点,扩散方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对三维任意(星形)多面体网格,本文构造了扩散方程的一种单元中心型非线性有限体积格式,证明了该格式具有保正性.在该格式设计中,除引入网格中心量外,还引入网格节点量和网格面中心量作为中间未知量,它们将用网格中心未知量线性组合表示,使得格式仅有网格中心未知量作为基本未知量.在节点量计算中,利用网格面上的调和平均点,设计了一种适用于三维多面体网格的局部显式加权方法.该格式适用于求解非平面的网格表面和间断扩散系数的问题.数值例子验证了它对光滑解具有二阶精度和保正性.

References

[1]  Li D Y, Chen G N. Introduction of Difference Methods for Parabolic Equations[M]. Science Press (in Chinese), Beijing, 1995.
[2]  Shashkov M, Steinberg S. Solving diffusion equations with rough coefficients in rough grids[M]. J. Comput. Phys., 1996, 129:383-405.
[3]  Aavatsmark I. An introduction to multipoint flux approxmations for quadrilateral grids[J]. Computational Geosciences, 2002, 6:405-432.
[4]  Lipnikov K, Manzini G, Svyatskiy D. Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems[J]. Journal of Computational Physics, 2011, 230:2620-2642.
[5]  Nordbotten J M, Aavatsmark I and Eigestad G T. Monotonicity of control volume methods, Numer. Math. 2007, 106:255-288.
[6]  Nordbotten J M and Eigestad G T. Discretization on quadrilateral grids with improved monotonicity[J]. J. Comput. Phys., 2005, 203:744-760.
[7]  Le Potier C. Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes[J]. C. R. Acad. Sci. Paris, Ser. I 2005, 341:787-792.
[8]  Lipnikov K, Shashkov M, Svyatskiy D, and Vassilevski Yu. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[J]. J. Comput. Phys., 2007, 227:492-512.
[9]  Yuan G W, Sheng Z Q. Monotone finite volume schemes for diffusion equations on polygonal meshes[J]. J. Comput. Phys., 2008, 227:6288-6312.
[10]  袁光伟, 盛志强, 岳晶岩. 扩散方程保正的有限体积格式[J]. 中国科学:数学, 2012, 42(9):951-970.
[11]  Sheng Z, Yue J, Yuan G. Monotone finite volume schemes of no equilibrium radiation diffusions on distorted meshes[J]. SIAM J Sci Comput, 2009, 31:2915-2934.
[12]  Sheng Zhiqiang, Yuan Guangwei. An improved monotone finite volume scheme for diffusion equation on polygonal meshes[J]. Journal of Computational Physics, 2012, 231(9):3739-3754.
[13]  Gao Zhiming, Wu Jiming. A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitary 2D and 3D meshes[J]. J. Comput. Phys., 2013, 250:308-331.
[14]  Nikitin K, Vassilevski Yu. A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D[J]. Russ. J. Numer. Anal. Math. Modelling, 2010, (25):335-358.
[15]  Agelas L, Eymard R, Herbin R. A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media[J]. C.R. Acad. Sci. Paris Ser., 2009, 347:673-676.
[16]  Chang Lina, Yuan Guangwei. An efficient and accurate reconstruction algorithm for the formulation of cell-centered diffusion schemes[J]. Journal of Computational Physics, 2012, 231:6935-6952.
[17]  Milad Fatenejad, Gregory A. Moses, Extension of Kershaw diffusion scheme to hexahedral meshes[J]. Journal of Computational Physics, 2008, 227:2187-2194.
[18]  Hang Xudeng, Sun W, Ye C. Finite volume solution of heat and moisture transfer through three-dimensional textile materials[J]. Computer and Fluids, 2012, 57:25-39.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133