Carlson B G. Solution of the transport equation by Sn approximations[J]. LA-1599, Los Alamos Scientific Laboratory, 1953.
[2]
Lathrop K D, Carlson B G. Discrete ordinates angular quadrature of the neutron transport equation[J]. LA-3188, Las Alamos Scientific Laboratory, 1965.
[3]
Lathrop K D. Spatial differencing of the transport equation:positivity v.s. accuracy[J]. Journal of Computational Physics, 1969, 4:475.
[4]
Reed W H, Hill T R, Brinkley F W, Lathrop K D. Triplet:a two-dimensional multigroup, trangular-mesh, planar geometry, explicit transport code[J]. Los Alamos Scientific Laboratory Report LA-5428-MS, 1973.
[5]
Alcouffe R E, Larsen E W, Miller W F, Wienke B R. Computational efficiency of numerical methods for the multigroup, discrete-ordinates neutron transport equations[J]. Nucl. Sci. Eng., 1979, 71:111.
[6]
Wareing T A, Walters W F. Exponential-discontinuous scheme for x-y geometry transport problems[J]. Trans. Am. Nucl. Soc., 1995, 72:169.
[7]
Walters W F. Use of the Chebychev-Legendre quadrature set in discrete-ordinates codes[J]. Los Alamos Scientific Laboratory Report LA-11342-C, 1988.
[8]
Morel J E. A hybird Collocation-Galerkin-Sn method for solving the Boltzmann transport equation[J]. Nucl. Sci. Eng., 1989, 72:1001.
[9]
Reed W H. The effectiveness of acceleration techniques for iterative methods in transport theory[J]. Nucl. Sci. Eng., 1971, 45:245.
[10]
Morel J E, Larsen E W, Matzen M K. A synthetic acceleration scheme for radiative diffusion calculations[J]. J. Quant. Spectrosc. Radiat. Transfer, 1984, 34:243.
[11]
Wareing T A, Walters W F, Morel J E. A diffusion-accelerated solution method for the nonlinear characteristic scheme in slab geometry[J]. Nucl. Sci. Eng., 1996, 124:72.
[12]
Lewis E E, Miller W F. Computational Methods of Neutron Transport[M]. ANS Inc., La Grange Park, IL, USA, 1993.
Yong H, Song P, Zhai C L, Kang D G, Gu J F, Hang X D, Gu P J, Jiang S. Numerical simulation of 2-D radiation-drive ignition implosion process[J]. Commun. Theor. Phys., 2014, 59:737.