全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2014 

分数阶光滑函数线性和二次插值公式余项估计

, PP. 393-406

Keywords: 局部分数阶导数,分数阶Taylor公式,线性和二次插值余项,临界阶估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在局部分数阶导数定义的基础上给出了高阶局部分数阶导数定义,并据此得到了一般形式的分数阶Taylor公式.用该公式给出了分数阶光滑函数线性和二次插值公式余项的表达式,并进一步导出了分段线性插值的收敛阶估计.针对分数阶导数临界阶计算困难的问题,本文利用线性插值余项设计了一种外推算法,能够比较准确地求出函数在某点的局部分数阶导数的临界阶.最后通过编写算法的Mathematica程序,验证了理论分析的正确性,并用实例说明了算法的有效性.

References

[1]  王兴华, 杨义群. 关于低度光滑函数的插值余项[J]. 高等学校计算 数学学报, 1983, 5(3): 193-203.
[2]  Gancho T. Tachev. Piecewise linear interpolation with nonequidistant nodes[J]. Numerical Functional Analysis and Optimization, 2000, 21(7-8): 945-953.
[3]  Francesc Arandiga. Interpolation and approximation of piecewise smooth functions[J]. SIAM Journal on Numerical Analysis, 2006, 43(1): 41-57.
[4]  Shantanu Das. Functional fractional calculus[M]. Springer, 2011.
[5]  Kolwankar KM, Gangal AD. Fractional differentiability of nowhere differentiable functions and dimensions[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 1996, 6(4): 505-513.
[6]  Kolwankar KM, Gangal AD. H?lder exponents of irregular signals and local fractional derivatives[J]. Pramana- Journal of Physics, 1997, 48(1): 49-68.
[7]  Ben Adda F, Cresson J. About non-differentiable functions[J]. Journal of Mathematical Analysis and Applications, 2001, 263(2): 721-737.
[8]  Babakhani A, Daftardar-Gejji V. On calculus of local fractional derivatives[J]. Journal of Mathematical Analysis and Applications, 2002, 270(1): 66-79.
[9]  Yan Chen, Ying Yan, Kewei Zhang. On the local fractional derivative[J]. Journal of Mathematical Analysis and Applications, 2010, 362(1): 17-33.
[10]  Xiaojun Yang. Advanced local fractional calculus and its applications[M]. World Science Publisher, 2012.
[11]  Tahani Ali Salman. Fractional calculus and non-differentiable functions[J]. Research Journal of Applied Sciences, 2009, 4(1): 26-28.
[12]  G.Jumarie. Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results[J]. Computers and Mathematics with Applications, 2006, 51(9-10): 1367-1376.
[13]  Thomas J. Osler, Taylor's series generalized for fractional derivatives and applications[J], SIAM Journal on Mathematical Analysis, 1971, 2(1): 37-48.
[14]  J.J.Trujillo, M.Rivero, B.Bonilla. On a Riemann-Liouville generalized Taylor's formula[J]. Journal of Mathematical Analysis and Applications, 1999, 231: 255-265.
[15]  Odibat ZM, Shawagfeh NT. Generalized Taylor's formula[J]. Applied Mathematics and Computation, 2007, 186(1): 286-293.
[16]  Avram Sidi. Practical extrapolation methods, theory and applications[M]. Cambridge University Press, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133