Peng S L. Construction of two-dimensional compactly supported orthogonal wavelet filter with linear phase[J]. Acta Math. Sin., Engl. Ser., 2002, 18(4): 1-8.
[2]
Chen H L, Peng S L. Construction of finite non-separable orthogonal filter banks with linear phase and its application in image segmentation[J]. LNCS, 2001, 2251: 223-229.
[3]
Peng S L. N dimensional finite wavelet filter[J]. J. Comput. Math., 2003, 21(5): 595-602.
[4]
Petukhov A. Construction of symmetric orthogonal bases of wavelets and tight frames with integer dilation factor[J], Appl. Comput. Harmon. Anal., 2004, 17: 198-210.
[5]
Zhou J P, Do M N and Kovacevic J. Special paraunitary matrices, cayley transform and multidimensional orthogonal filter banks[J], IEEE Trans. Image Proc., 2006, 15(2): 511-519.
[6]
He W J and Lai M J. Example of Bivariate Nonseperable Compactly Supported Orthonormal Continuous Wavelet [J]. IEEE Trans. Image Proc., 2000, 9(5): 949-953.
[7]
Jiang Q T. Parameterizations of symmetric orthogonal multifilter banks with different filter lengths[J], Linear Algebra Appl., 2000, 311(1-3): 79-96.
[8]
Shen L, Tan H H. A characterization of symmetric/antisymmetric orthonormal length-4 multifilters[J]. IEE P-VIS Image Sign., 2001, 148(2): 103-106.
[9]
Jiang Q T. Symmetric paraunitary matrix extension and parameterizations of symmetric orthogonal multifilter banks[J], SIAM J Matrix Anal. A, 1996, 22: 723-737.
[10]
Stanhill D and Zeevi Y Y. Two dimensional orthogonal filter banks and wavelets with linear phase[J]. IEEE Trans. Signal Proc., 1998, 46: 183-190.