Byers R and Xu H. A new scaling for Newton's iteration for the polar decomposition and its backward stability[J]. SIAM J. Matrix Anal. Appl., 2008, 30: 822-843.
[2]
Dubrulle A A. An optimum iteration for the matrix polar decomposition[J]. Electron. Trans. Numer. Anal., 1999, 8: 21-25.
[3]
Golub G H and Van Loan C F. Matrix Computation(3rd). Johns Hopkins University Press, Baltimore, 2011.
[4]
Gander W. Algorithms for the polar decomposition[J]. SIAM J. Sci. Stat. Comput., 1990, 11: 1102-1115.
[5]
Higham N J. Computing the polar decomposition-with applications[J]. SIAM J. Sci. Stat. Comput., 1986, 7: 1160-1174.
[6]
Higham N J and Schreiber R S. Fast polar decomposition of an arbitrary matrix[J]. SIAM J. Sci. Stat. Comput., 1990, 11: 648-655.
[7]
Higham N J. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, USA: Philadelphia, 2008.
[8]
JAY L O. A note on Q-order of convergence[J]. BIT Numerical Mathematics, 2001, 41: 422-429.
[9]
Kenney C and Laub A J. On scaling Newton's method for polar decomposition and the matrix sign function[J]. SIAM J. Matrix Anal. Appl., 1992, 13: 688-706.
[10]
Monsalv M. A secant method for the matrix sign function. http://libra.msra.cn/Publication/5553130/, 2009.
[11]
Monsalv M and Raydan M. Newton's method and secant methods: A long-standing relationship from vectors to matrices[M]. Portugaliae Mathematica, 2011, 68: 431-475.
[12]
Nakatsukasa Y, Bai Z and Gygi F. Optimizing Halley's Iteration for Computing the Matrix Polar Decomposition[J]. SIAM J. Matrix Anal. Appl., 2010, 31: 2700-2720.