An H B, Bai Z Z. A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations[J]. Appl. Numer. Math., 2007, 57(3): 235-252.
[4]
Aranson I S, Kramer L. The world of the complex Ginzburg-Landau equation[J]. Rev. Mod. Phys., 2002, 74: 99-143.
[5]
Kuramoto Y. Chemical Oscillations, Waves, and Turbulence[M]. Courier Dover Publications, INC. Mineola, New York, 2003.
[6]
Sulem C, Sulem P L. The Nonlinear Schrodinger Equatelf-focusing and Wave Collapse[M]. Springer Verlag, New York, 1999.
[7]
Ypma T J. Local Convergence of Inexact Newton Methods[J]. SIAM J. Numer. Anal., 1984, 21(3): 583-590.
[8]
Dembo R S, Eisenstat S C, Steihaug T. Inexact Newton Methods[J]. SIAM J. Numer. Anal., 1982, 19(2): 400-408.
[9]
Brown P N, Saad Y. Globally convergent techniques in nonlinear Newton-Krylov algorithms[J]. WSSIAA2, 1989, 151-164.
[10]
Brown P N, Saad Y. Convergence Theory of Nonlinear Newton Krylov Algorithms[J]. SIAM J. Optim., 1994, 4(2): 297-330.
[11]
Bai Z Z, Guo X P. On Newton-HSS methods for systems of nonlinear equations with positive-difinite Jacobian matrices[J]. J. Comput. Math., 2010, 28(2): 235-260.
[12]
Ortega J M, Rheinboldt W C, Iterative solution of nonlinear equations in several variables[M]. Academic Press, New York and London, 1970.
[13]
Yang A L, Wu Y J, Newton-Mhss Methods for Solving Systems of Nonlinear Equations with Complex Symmetric Jacobian Matrices[J]. Numer. Alg. Con. Opt., 2012, 2: 839-853.
[14]
Guo X P, Duff I S. Semilocal and golbal convergence of the Newton-HSS method for systems of nonlinear equations[J]. Numer. Lin. Alg. Appl., 2011, 18(3): 299-315.
[15]
Z.Z. Bai, Yang X. On HSS-based iteration methods for weakly nonlinear systems[J]. Appl. Numer. Math., 2009, 59(12): 2923-2936.
[16]
Bai Z Z, Golub G H, Ng M K. Hermitian and skew-hermitian splitting methods for non-hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3): 603-626.
[17]
Bai Z Z, Benzi M, Chen F. Modified HSS Iteration Methods for a class of Complex Symmetric Linear Systems[J]. Computing, 2010, 87(3-4): 93-111.