全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2014 

一类弱非线性方程组的Picard-MHSS迭代方法

, PP. 291-302

Keywords: 非线性方程组,Hermite反Hermite分裂,Picard方法,局部收敛性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

修正的Hermite/反Hermite分裂(MHSS)迭代方法是一类求解大型稀疏复对称线性代数方程组的无条件收敛的迭代算法.基于非线性代数方程组的特殊结构和性质,我们选取Picard迭代为外迭代方法,MHSS迭代作为内迭代方法,构造了求解大型稀疏弱非线性代数方程组的Picard-MHSS和非线性MHSS-like方法.这两类方法的优点是不需要在每次迭代时均精确计算和存储Jacobi矩阵,仅需要在迭代过程中求解两个常系数实对称正定子线性方程组.除此之外,在一定条件下,给出了两类方法的局部收敛性定理.数值结果证明了这两类方法是可行、有效和稳健的.

References

[1]  Bai Z Z, Benzi M, Chen F. On preconditioned MHSS iteration methods complex symmetric linear systems[J]. Numer. Algor., 2011, 56(2): 297-317.
[2]  杨爱利, 伍渝江等. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340. 浏览
[3]  An H B, Bai Z Z. A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations[J]. Appl. Numer. Math., 2007, 57(3): 235-252.
[4]  Aranson I S, Kramer L. The world of the complex Ginzburg-Landau equation[J]. Rev. Mod. Phys., 2002, 74: 99-143.
[5]  Kuramoto Y. Chemical Oscillations, Waves, and Turbulence[M]. Courier Dover Publications, INC. Mineola, New York, 2003.
[6]  Sulem C, Sulem P L. The Nonlinear Schrodinger Equatelf-focusing and Wave Collapse[M]. Springer Verlag, New York, 1999.
[7]  Ypma T J. Local Convergence of Inexact Newton Methods[J]. SIAM J. Numer. Anal., 1984, 21(3): 583-590.
[8]  Dembo R S, Eisenstat S C, Steihaug T. Inexact Newton Methods[J]. SIAM J. Numer. Anal., 1982, 19(2): 400-408.
[9]  Brown P N, Saad Y. Globally convergent techniques in nonlinear Newton-Krylov algorithms[J]. WSSIAA2, 1989, 151-164.
[10]  Brown P N, Saad Y. Convergence Theory of Nonlinear Newton Krylov Algorithms[J]. SIAM J. Optim., 1994, 4(2): 297-330.
[11]  Bai Z Z, Guo X P. On Newton-HSS methods for systems of nonlinear equations with positive-difinite Jacobian matrices[J]. J. Comput. Math., 2010, 28(2): 235-260.
[12]  Ortega J M, Rheinboldt W C, Iterative solution of nonlinear equations in several variables[M]. Academic Press, New York and London, 1970.
[13]  Yang A L, Wu Y J, Newton-Mhss Methods for Solving Systems of Nonlinear Equations with Complex Symmetric Jacobian Matrices[J]. Numer. Alg. Con. Opt., 2012, 2: 839-853.
[14]  Guo X P, Duff I S. Semilocal and golbal convergence of the Newton-HSS method for systems of nonlinear equations[J]. Numer. Lin. Alg. Appl., 2011, 18(3): 299-315.
[15]  Z.Z. Bai, Yang X. On HSS-based iteration methods for weakly nonlinear systems[J]. Appl. Numer. Math., 2009, 59(12): 2923-2936.
[16]  Bai Z Z, Golub G H, Ng M K. Hermitian and skew-hermitian splitting methods for non-hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3): 603-626.
[17]  Bai Z Z, Benzi M, Chen F. Modified HSS Iteration Methods for a class of Complex Symmetric Linear Systems[J]. Computing, 2010, 87(3-4): 93-111.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133