全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2014 

保结构算法的相位误差分析及其修正

, PP. 271-290

Keywords: 辛方法,对角Pá,de逼近,平均向量场法,相位误差,相位修正

Full-Text   Cite this paper   Add to My Lib

Abstract:

辛算法和保能量算法是应用最为广泛的两种保结构算法.本文从相位误差的角度给出了他们的比较结果.我们针对线性动力系统,分别分析了基于Páde对角逼近给出的辛算法和基于平均向量场法得到的能量守恒算法的相位误差,并通过数值验证了分析结果.文章还给出了保结构算法相位误差的改进方法,并通过数值例子验证了方法的有效性.

References

[1]  Quispel G W, McLachlan R I. A new class of energy-preserving numerical integration methods[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(4): 045206.
[2]  Feng K. Difference scheme for Hamilton formalism and symplectics geometry[J]. Journal of Computational Mathematics, 1986, 4(3): 279-289.
[3]  Feng K, Wu H M, Qin M Z, Wang D L. Construction of canonical difference scheme for Hamiltonian formalism via generating functions[J]. Journal of Computational Mathematics, 1989, 7(1): 71-96.
[4]  Liu X S, Su L W, Ding P Z. Symplectic algorithm for use in computing the time-independent Schr?inger equation[J]. International Journal of Quantum Chemistry, 2002, 87(1): 1-11.
[5]  刘林, 廖新浩, 赵长印, 王昌彬. 辛算法在动力天文 中的应用(III)[J]. 天文学报, 1994, 35(1): 51-66.
[6]  Celledoni E. Energy-preserving integrators[J], Combinatorics and Control, 2010.
[7]  Celledoni E, McLachlan R I, Owren B, et al. Energy-preserving integrators and the structure of B-series[J]. Foundations of Computational Mathematics, 2010, 10(6): 673-693.
[8]  邢誉峰, 杨蓉. 单步辛算法的相位误差分析及修正[J]. 力学学报, 2007, 39(5): 668-671.
[9]  Li Q H, Song Y Z. Explicite one-step P-stable methods for second order periodic initial value problems[J]. Numerical Mathmatics, 2006, 15(3): 237-249.
[10]  谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学 报, 2007, 39(3): 373-381.
[11]  邢誉峰, 杨蓉. 动力学平衡方程的Euler中点辛差分求解格式[J]. 力学学报, 2007, 39(1): 100-105.
[12]  Guo B Y, Pascual P J. Numerical solution of the sine-Gordon equation[J]. Applied Mathematisc and Computation, 1986, 18(1): 1-14.
[13]  McLachlan R I, Quispel G W, Robidoux N. Geometric integration using discrete gradient[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1754): 1021-1045.
[14]  Tang W S, Sun Y J. Time finite element methods: a unified framework for numerical discretizations of ODEs[J]. Applied Mathematisc and Computation, 2012, 219(4): 2158-2179.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133