Hanygad A. Multidimensional solutions of time-fractional diffusion-wave equations[J]. Proceedings of The Royal Society of London (A), 2002, 458: 933-957.
[2]
Eidelman S D, Kochubei A N. Cauchy problem for fractional diffusion equations[J]. Journal of Differential Equations, 2004, 199: 211-255.
[3]
Luchko Y. Maximum principle for the generalized time-fractional diffusion equation[J]. J. Math. Anal. Appl., 2009, 351: 218-223.
[4]
Luchko Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation[J]. Computers and Mathematics with Applications, 2010, 59: 1766-1772.
[5]
Luchko Y. Maximum principle and its application for the time-fractional diffusion equations[J]. Fractional Calculus and Applied Analysis, 2011, 14: 110-124.
[6]
Zhuang P, Liu F. Implicit finite difference approximation for the time fractional diffusion equation[J]. Journal of Applied Mathematics and Computing, 2006, 22: 87-99.
[7]
Liu F, Zhuang P, Anh V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation[J]. Applied Mathematics Computation, 2007, 191: 12-20.
[8]
Liu F, Meerschaert M M, McGough R J, et al. Numerical methods for solving the multi-term time-fractional wave-diffusion equations[J]. Fractional Calculus and Applied Analysis, 2013, 16: 9-25.
[9]
Murio D A. Implicit finite difference approximation for time fractional diffusion equations[J]. Computers and Mathematics with Applications, 2008, 56: 1138-1145.
[10]
Lin Y M, Xu C J. Finite difference/spectral approximations for the time-fractional diffusion equation[J]. J. Comput. Phys., 2007, 225: 1533-1552.
[11]
Ren J C, Sun Z Z, Zhao X. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions[J]. Journal of Computational Physics, 2013, 232: 456-467.
[12]
Benson D A. The Fractional Advection-Dispersion Equation: Development and Application[D]. University of Nevada, Reno, USA, 1998.
[13]
Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations[J]. Journal of Computational and Applied Mathematics, 2004, 172: 65-77.
[14]
Meerschaert M M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations[J]. Applied Numerical Mathematics, 2006, 56: 80-90.
[15]
Baeumer B, Kovács M, Meerschaert M M. Numerical solutions for fractional reaction-diffusion equations[J]. Computers and Mathematics with Applications, 2008, 55: 2212-2226.
[16]
Benson D A,Meerschaert MM, Revielle J. Fractional calculus in hydrologic modeling: A numerical perspective[J]. Advances in Water Resources, 2013, 51: 479-497.
[17]
Liu F, Anh V, Turner I. Numerical solution of the space fractional Fokker-Planck equation[J]. Journal of Computational and Applied Mathematics, 2004, 166: 209-219.
[18]
Liu Q, Liu F, Turner I, Anh V. Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method[J]. Journal of Computational Physics, 2007, 222: 57-70.
[19]
Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives[J]. Appl. Math. Modelling, 2010, 34: 200-218.
[20]
Chen C-M, Liu F W, Turner I, Anh V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation[J]. Numerical Algorithms, 2010, 54: 1-21.
[21]
Deng W H. Finite element method for the space and time fractional Fokker-Planck equation[J]. SIAM Journal on Numerical Analysis, 2008, 47: 204-226.
[22]
DengW H, Du S D, Wu Y J. High order finite difference WENO schemes for fractional differential equations[J]. Applied Mathematics Letters, 2013, 26: 362-366.
[23]
Murio D A. Stable numerical solution of fractional-diffusion inverse heat conduction problem[J]. Computers and Mathematics with Applications, 2007, 53: 1492-1501.
[24]
Cheng J, Nakagawa J, Yamamoto M, Yamazaki T. Uniqueness in an inverse problem for a onedimensional fractional diffusion equation[J]. Inverse Problems, 2009, 25: 115002.
[25]
Bondarenko A N, Ivaschenko D S. Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient[J]. Journal of Inverse and Ill-Posed Problems, 2009, 17: 419-440.
[26]
Liu J J, Yamamoto M. A backward problem for the time-fractional diffusion equation[J]. Applicable Analysis, 2010, 89: 1769-1788.
[27]
Zheng G H, Wei T. Spetral regularization method for a Cauchy problem of the time fractional advection-dispersion equation[J]. Journal of Computational and Applied Mathematics, 2010, 233: 2631-2640.
[28]
Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[J]. Journal of Mathematical Analysis and Applications, 2011, 382: 426-447.
[29]
Xu X, Cheng J, Yamamoto M. Carleman estimate for a fractional diffusion equation with half order and application[J]. Applicable Analysis, 2011, 90: 1355-1371.
[30]
Tuan V K. Inverse problem for fractional diffusion equation[J]. Fractional Calculus and Applied Analysis, 2011, 14: 31-55.
[31]
Yamamoto M, Zhang Y. Conditional stability in determining a zeroth-order coefficient in a halforder fractional diffusion equation by a Carleman estimate[J]. Inverse Problems, 2012, 28: 105010.
[32]
Jin B T, Rundell W. An inverse problem for a one-dimensional time-fractional diffusion problem[J]. Inverse Problems, 2012, 28: 075010.
[33]
Li G S, Gu W J, Jia X Z. Numerical inversions for space-dependent diffusion coefficient in the time fractional diffusion equation[J]. Journal of Inverse and Ill-Posed Problems, 2012, 20: 339-366.
[34]
Li G S, Zhang D L, Jia X Z, Yamamoto M. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation[J]. Inverse Problems, 2013, 29: 065014.
[35]
Xiong X T, Zhou Q, Hon Y C. An inverse problem for fractional diffusion equation in 2-dimensional case: Stability analysis and regularization[J]. Journal of Mathematical Analysis and Applications, 2012, 393: 185-199.
[36]
Wei T, Zhang Z Q. Reconstruction of a time-dependent source term in a time-fractional diffusion equation[J]. Engineering Analysis with Boundary Elements, 2013, 37: 23-31.
[37]
Wei H, Chen W, Sun H G, Li X C. A coupled method for inverse source problem of spatial fractional anomalous diffusion equations[J]. Inverse Problems in Science and Engineering, 2010, 18: 945-956.
[38]
Zheng G H, Wei T. Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion equation[J]. Inverse Problems, 2010, 26: 115017.
[39]
Chi G S, Li G S, Jia X Z. Numerical inversions of source term in FADE with Dirichlet boundary condition by final observations[J]. Computers and Mathematics with Applications, 2011, 62: 1619- 1626.
[40]
Tian W Y, Li C, Deng W H, Wu Y J. Regularization methods for unknown source in space fractional diffusion equation[J]. Mathematics and Computers in Simulation, 2012, 85: 45-56.
Zhang Y. A finite difference method for fractional partial differential equation[J]. Applied Mathematics and Computation, 2009, 215: 524-529.
[43]
Su C W. Numerical Methods and Applications of Inverse Problems in PDE (in Chinese). Xi'an: Northwestern Polytechnical University Press, 1995.
[44]
Li G S, Cheng J, Yao D, Liu H L, Liu J J. One-dimensional equilibrium model and source parameter determination for soil-column experiment[J]. Applied Mathematics and Computation, 2007, 190: 1365-1374.
[45]
Li G S, Tan Y J, Yao D, Wang X Q, Liu H L. A nonlinear mathematical model for an undisturbed soil-column experiment and source parameter identification[J]. Inverse Problems in Science and Engineering, 2008, 16: 885-901.
[46]
Nie H T, Tao J H. Inversion of dispersion coefficient in water quality model using optimal perturbation algorithm[J]. Applied Mathematics and Mechanics, 2009, 30: 703-712.
[47]
He J H. Homotopy perturbation method: a new nonlinear analytical technique[J]. Applied Mathematics and Computation, 2003, 135: 73-79.
[48]
He J H. Comparison of homotopy perturbation method and homotopy analysis method[J]. Applied Mathematics and Computation, 2004, 156: 527-539.
[49]
Hosseinnia S H, Ranjbar A, Ganji D D, Soltani H, Ghasemi J. Homotopy perturbation based linearization of nonlinear heat transfer dynamic[J]. J. Appl. Math. Comput., 2009, 29: 163-176.
[50]
Adams E E, Gelhar L W. Field study of dispersion in a heterogeneous aquifer 2: Spatial moments analysis[J]. Water Resources Research, 1992, 28: 3293-3307.
[51]
Hatano Y, Hatano N. Dispersive transport of ions in column experiments: an explanation of long-tailed profiles[J]. Water Resources Research, 1998, 34: 1027-1033.
[52]
Hilfer R. Applications of Fractional Calculus in Physics[M]. Singapore: World Scientific, 2000.
[53]
Zhou L, Selim H M. Application of the fractional advection-dispersion equations in porous media[J]. Soil Science Society of America Journal, 2003, 67: 1079-1084.
[54]
Magin R. Fractional Calculus in Bioengineering[M]. Redding CT: Begell House Inc, 2006.
[55]
Caponetto R, Dongola G, Fortuna L, Petras I. Fractional Order Systems: Modeling and Control Applications[M]. Singapore: World Scientific, 2010.
[56]
Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models[M]. London: Imperial College Press, 2010.
[57]
Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York: John Wiley, 1993.
[58]
Podlubny I. Fractional Differential Equations[M]. San Diego: Academic, 1999.
[59]
Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006.
[60]
Gorenflo R, Luchko Y, Zabrejko P P. On solvability of linear fractional differential equations in Banach spaces[J]. Fractional Calculus and Applied Analysis, 1999, 2: 163-176.
[61]
Gorenflo R, Mainardi F. Some recent advances in theory and simulation of fractional diffusion processes[J]. Journal of Computational and Applied Mathematics, 2009, 229: 400-415.