Albanese R and Rubinacci G. Formulation of the eddy-current problem[J]. IEE Proceedings, 1990, 137: 16-22.
[2]
Bermúdez A, Rodriguez B L, Rodriguez R and Salgado P. Numerical solution of transient eddy current problems with input current intensities as boundary data. be published.
[3]
Biro O and Preis K. On the use of the magnetic vector potiential in the finite element analysis of three-dimensional eddy currents[J]. IEEE Trans. Magn., 1989, 25: 3145-3159.
[4]
Buffa A and Ciarlet P. On trace for functional spaces related to Maxwell's equations. Part I: An integration by parts formula in Lipschitz polyhedra[J]. Math. Methods Appl. Sci., 2001, 24: 9-30. 3.0.CO;2-2 target="_blank">
[5]
Buffa A and Ciarlet P. On trace for functional spaces related to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications[J]. Math. Methods Appl. Sci., 2001, 24: 31-48. 3.0.CO;2-X target="_blank">
[6]
Buffa A, Costabel M, and Sheen D. On traces for H(curl, Ω) in Lipschitz domains[J]. J. Math. Anal. Appl., 2002, 2: 845-867.
[7]
Ciarlet P. The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
[8]
Ciarlet P and Zou J. Fully discrete finite element approaches for time-dependent Maxwell's equations[J]. Numerische Mathematik, 1999, 82: 193-219.
[9]
Hiptmair R. Symmetric coupling for eddy current problems[J]. SIAM J. Numer. Anal., 2002, 40: 41-65.
[10]
Jin J M. The Finite element method in electromagnetics. John Wiley & Sons, INC., 2002.
[11]
Kang T, Zhang H and Kim K I. A new H-splitting decoupled scheme for a transient eddy current problem over an unbounded domain[J]. Mathematical and Computer Modelling, 2011, 53: 952-963.
[12]
Kang T and Kim K I. Fully discrete potential-based finite element methods for a transient eddy current problem[J]. Computing, 2009, 85: 339-362.
[13]
Kim K I and Kang T. A potential-based finite element method of time-dependent Maxwell's equations[J]. Int. J. Computer Math., 2006, 83: 107-122.
[14]
Meddahi S and Selgas V. An H-based FEM-BEM formulation for a time dependent eddy current problem[J]. Appl. Numer. Math., 2008, 58: 1061-1083.
[15]
Zienkiewicz O C. Finite element-the basic concepts and the application to 3D magnetostatic problems. London, John Wiley & Sons, INC., 1980.
[16]
Acevedo R and Meddahi S. An E-based mixed-FEM and BEM coupling for a time-dependent eddy current problem[J]. IMA Journal of Numerical Analysis, doi:10.1093/imanum/drp049(2010).
[17]
Acevedo R, Meddahi S and Rodriguez R. An E-based mixed formulation for a time-dependent eddy current problem[J]. Math. Comp., 2009, 268: 1929-1949.
[18]
Agarwal R. Difference equations and inequalities. Marcel Dekker, New York, 1992.