全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2014 

无界区域瞬时涡流问题有限元-边界元耦合的A-φ法的误差分析

, PP. 163-178

Keywords: 瞬时涡流问题,无界区域,有限元-边界元耦合,A-&phi,解耦方法,误差分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对三维无界区域带有凸多边形导体的瞬时涡流问题,本文提出了一种基于势场的有限元-边界元耦合的方法,从理论上讨论了其能量模误差估计.虽然电场被分解为电矢势A与磁标势φ的梯度之和后增加了方程与未知量的个数,但这种分解可以很好地处理不同介质间的间断.与传统的A-φ法不同,本文讨论了一种全离散的A-φ解耦形式,这样不仅可以避免传统格式所产生的鞍点问题的求解,又可以减少计算量.

References

[1]  Albanese R and Rubinacci G. Formulation of the eddy-current problem[J]. IEE Proceedings, 1990, 137: 16-22.
[2]  Bermúdez A, Rodriguez B L, Rodriguez R and Salgado P. Numerical solution of transient eddy current problems with input current intensities as boundary data. be published.
[3]  Biro O and Preis K. On the use of the magnetic vector potiential in the finite element analysis of three-dimensional eddy currents[J]. IEEE Trans. Magn., 1989, 25: 3145-3159.
[4]  Buffa A and Ciarlet P. On trace for functional spaces related to Maxwell's equations. Part I: An integration by parts formula in Lipschitz polyhedra[J]. Math. Methods Appl. Sci., 2001, 24: 9-30. 3.0.CO;2-2 target="_blank">
[5]  Buffa A and Ciarlet P. On trace for functional spaces related to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications[J]. Math. Methods Appl. Sci., 2001, 24: 31-48. 3.0.CO;2-X target="_blank">
[6]  Buffa A, Costabel M, and Sheen D. On traces for H(curl, Ω) in Lipschitz domains[J]. J. Math. Anal. Appl., 2002, 2: 845-867.
[7]  Ciarlet P. The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
[8]  Ciarlet P and Zou J. Fully discrete finite element approaches for time-dependent Maxwell's equations[J]. Numerische Mathematik, 1999, 82: 193-219.
[9]  Hiptmair R. Symmetric coupling for eddy current problems[J]. SIAM J. Numer. Anal., 2002, 40: 41-65.
[10]  Jin J M. The Finite element method in electromagnetics. John Wiley & Sons, INC., 2002.
[11]  Kang T, Zhang H and Kim K I. A new H-splitting decoupled scheme for a transient eddy current problem over an unbounded domain[J]. Mathematical and Computer Modelling, 2011, 53: 952-963.
[12]  Kang T and Kim K I. Fully discrete potential-based finite element methods for a transient eddy current problem[J]. Computing, 2009, 85: 339-362.
[13]  Kim K I and Kang T. A potential-based finite element method of time-dependent Maxwell's equations[J]. Int. J. Computer Math., 2006, 83: 107-122.
[14]  Meddahi S and Selgas V. An H-based FEM-BEM formulation for a time dependent eddy current problem[J]. Appl. Numer. Math., 2008, 58: 1061-1083.
[15]  Zienkiewicz O C. Finite element-the basic concepts and the application to 3D magnetostatic problems. London, John Wiley & Sons, INC., 1980.
[16]  Acevedo R and Meddahi S. An E-based mixed-FEM and BEM coupling for a time-dependent eddy current problem[J]. IMA Journal of Numerical Analysis, doi:10.1093/imanum/drp049(2010).
[17]  Acevedo R, Meddahi S and Rodriguez R. An E-based mixed formulation for a time-dependent eddy current problem[J]. Math. Comp., 2009, 268: 1929-1949.
[18]  Agarwal R. Difference equations and inequalities. Marcel Dekker, New York, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133