Furihata D. A stable and conservative finite difference scheme for the Cahn-Hilliard equation[J]. Numer. Math., 2001, 87: 675-699.
[2]
Celledoni E, Grimm V, McLachlan R I, McLaren D I, ect Preserving energy resp. dissipation in numerical PDEs, using the average Vector Field method[J]. Comput. Phys., (2012, 231: 6770-6789.
[3]
Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs[J]. J. Phys. A: Math. Gen., 2006, 39: 5287-5320.
[4]
McLachlan R I and Quispel N R W and Robidoux N. Geometric integration using discrete gradients[J]. Phil. Trans. Roy. Soc. A, 1999, 357: 32-56.
[5]
Furihata D, Matsuo T. Discrete variational derivative method, A structure-preserving numerical method for partial differential equations[C]. CRC Press, 2010.
[6]
Quispel G R W and McLaren D I. A new class of energy-preserving numerical integration method[J]. Phys. A: Math. Theor., 2008, 41: 045206(7pp).
[7]
Celledoni E, Mclaren D, McLachlan R I, Owren B, Quispel G R. Wright, Energy-Preserving Methods and B-Series, 21 Nordic Seminar on Computational Mechanics(NSCM-21), 2008.
[8]
Celledoni E, McLachlan R I, Owren B and Quispel G R W. Energy-preserving integrators and the structure of B-series, NTNU Report 5: 2009.
[9]
Chen Jingbo and Qin Mengzhao. multi-symplectic fourier pseudospectral method for the nonlinear schr?dinger equation[J]. Electronic Transactions on Numerical Analysis., 2001, 12: 193-204.
[10]
Briges W L and Henson V E. The DFT:An Owner's Manual for the Discrete Fourier Transform[J]. SIAM, 1995.
Danumjaya P, Nandakumaran A K. Orthgonal cubic spline collocation method for the Cahn-Hilliard equation[J]. Applied Mathematics and Computation, 2006, 182: 1316-1329.