全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2015 

Cahn-Hilliard方程的高阶保能量散逸性方法

, PP. 137-147

Keywords: 高阶平均向量场方法,能量散逸性,Cahn-Hilliard方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

能量散逸性是物理和力学中某些微分方程一项重要的物理特性.构造精确地保持微分方程能量散逸性的数值格式对模拟具有能量散逸性的微分方程具有重要的意义.本文利用四阶平均向量场方法和傅里叶谱方法构造了Cahn-Hilliard方程高阶保能量散逸性格式.数值结果表明高阶保能量散逸性格式能很好地模拟Cahn-Hilliard方程在不同初始条件下解的行为,并且很好地保持了Cahn-Hilliard方程的能量散逸特性.

References

[1]  Furihata D. A stable and conservative finite difference scheme for the Cahn-Hilliard equation[J]. Numer. Math., 2001, 87: 675-699.
[2]  Celledoni E, Grimm V, McLachlan R I, McLaren D I, ect Preserving energy resp. dissipation in numerical PDEs, using the average Vector Field method[J]. Comput. Phys., (2012, 231: 6770-6789.
[3]  Bridges T J, Reich S. Numerical methods for Hamiltonian PDEs[J]. J. Phys. A: Math. Gen., 2006, 39: 5287-5320.
[4]  McLachlan R I and Quispel N R W and Robidoux N. Geometric integration using discrete gradients[J]. Phil. Trans. Roy. Soc. A, 1999, 357: 32-56.
[5]  Furihata D, Matsuo T. Discrete variational derivative method, A structure-preserving numerical method for partial differential equations[C]. CRC Press, 2010.
[6]  Quispel G R W and McLaren D I. A new class of energy-preserving numerical integration method[J]. Phys. A: Math. Theor., 2008, 41: 045206(7pp).
[7]  Celledoni E, Mclaren D, McLachlan R I, Owren B, Quispel G R. Wright, Energy-Preserving Methods and B-Series, 21 Nordic Seminar on Computational Mechanics(NSCM-21), 2008.
[8]  Celledoni E, McLachlan R I, Owren B and Quispel G R W. Energy-preserving integrators and the structure of B-series, NTNU Report 5: 2009.
[9]  Chen Jingbo and Qin Mengzhao. multi-symplectic fourier pseudospectral method for the nonlinear schr?dinger equation[J]. Electronic Transactions on Numerical Analysis., 2001, 12: 193-204.
[10]  Briges W L and Henson V E. The DFT:An Owner's Manual for the Discrete Fourier Transform[J]. SIAM, 1995.
[11]  鞠端亮,马和平,张中强. MKDV方程的多辛Fourier拟谱方法[J]. 应 用数学与计算数学学报, 2009, 23(1): 6.
[12]  Danumjaya P, Nandakumaran A K. Orthgonal cubic spline collocation method for the Cahn-Hilliard equation[J]. Applied Mathematics and Computation, 2006, 182: 1316-1329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133