全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长悬臂桁架受横向集中力的拓扑优化

DOI: 10.11830/ISSN.1000-5013.2009.01.0080

Keywords: 拓扑优化, 结构优化, 桁架, 悬臂梁

Full-Text   Cite this paper   Add to My Lib

Abstract:

用解析方法推导拓扑优化最小重量长悬臂桁架.桁架在应力约束下,自由端受横向集中力作用,桁架宽度为常数,它的节长、结点坐标、腹杆和弦杆的角度,以及所有杆的横截面尺寸均为设计变量.分析结果表明,拓扑优化桁架中的各节腹杆的位置和横截面面积相同,中间结点位于每节1/4位置.当结构长度趋于无限长时,腹杆趋于30°,60°,相对45°桁架的体积差别不大,与类桁架连续体的体积差别也很小.

References

[1]  ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures:A review [J]. Applied Mechanics Reviews, 2001(4):331-389.doi:10.1115/1.1388075.
[2]  王全凤. 结构优化设计的新进展 [J]. 华侨大学学报(自然科学版), 1992(3):353-357.
[3]  BENDSΦE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988.197-224.
[4]  隋允康, 彭细荣. 结构拓扑优化ICM 方法的改善 [J]. 力学学报, 2005(2):190-198.doi:10.3321/j.issn:0459-1879.2005.02.010.
[5]  LEWINSKI T, ZHOU M, ROZVANY G I N. Extended exact solutions for least-weight truss layouts(Ⅰ):Cantilever with a horizontal axis of symmetry [J]. International Journal of Mechanical Sciences, 1994(5):375-398.doi:10.1016/0020-7403(94)90043-4.
[6]  LEWINSKI T, ZHOU M, ROZVANY G I N. Extended exact solutions for least-weight truss layouts(Ⅱ):Unsymmetric cantilevers [J]. International Journal of Mechanical Sciences, 1994(5):399-419.
[7]  ZHOU K, LI X. Topology optimization of structures under multiple load cases using fiber-reinforced composite material model [J]. Computational Mechanics, 2006(2):163-170.doi:10.1007/s00466-005-0735-9.
[8]  BENDSΦE M P, BEN-TALAL A, ZOWE J. Optimization methods for truss geometry and topology design [J]. Structural Optimization, 1994.141-159.
[9]  ROZVANY G I N, BENDSΦE M P, KIRSCH U. Layout optimization of structures [J]. Applied Mechanics Reviews, 1995(2):41-119.doi:10.1115/1.3005097.
[10]  XIE Y M, STEVEN G P. A simple evolutionary procedure for structures optimization [J]. Computers & Structures, 1993.885-896.
[11]  OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces [M]. New York:springer-verlag, 2003.
[12]  刘书田, 程耿东. 复合材料应力分析的均匀化方法 [J]. 力学学报, 1997(3):306-313.
[13]  GRACZYKOWSKI C, LEWINSKI T. Michell cantilevers constructed within trapezoidal domains(Ⅰ):Geometry of Hencky nets [J]. Structural Optimization, 2006(5):347-368.
[14]  GRACZULPWSLO C, LEWINSKI T. Michell cantilevers constructed within trapezoidal domains(Ⅱ):Virtual displacement fields [J]. Structural Optimization, 2006(6):347-368.
[15]  GRACZULPWSLO C, LEWOMSLO T. Michell cantilevers constructed within trapezoidal domains(Ⅲ):Force fields [J]. Structural Optimization, 2006(1):1-19.
[16]  GRACZULPWSLO C, LEWOMSLO T. Michell cantilevers constructed within trapezoidal domains(Ⅳ):Complete exact solutions of selected optimal designs and their approximations by trusses of finite number of joints [J]. Structural Optimization, 2006(2):113-129.
[17]  HEMP W S. Optimum Structure [M]. Oxford:clarendon Press, 1973.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133