全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可加布朗运动增量“快点”集的Packing维数

DOI: 10.11830/ISSN.1000-5013.2010.04.0480

Keywords: 可加布朗运动, “快点”集, Packing维数, 重分形分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论可加布朗运动样本轨道的重分形分析问题.利用构造上极限型集,集的乘积的Packing维数和Hausdorff维数关系的方法,分别得到其局部增量和沿坐标方向增量两种不同增量形式"快点"集的Packing维数结果.

References

[1]  EHM W. Sample function properties of mutli-parameter stable processes [J]. Probability Theory and Related Fields, 1981(2):195-228.
[2]  林火南. Wiener单的局部时和水平集的Hausdorff测度 [J]. 中国科学D辑, 2000, (10):869-880.doi:10.3321/j.issn:1006-9232.2000.10.002.
[3]  KHOSHNEVISAN D, SHI Z. Brownian sheet and capacity [J]. Annals of Probability, 1999(3):1135-1159.doi:10.1214/aop/1022677442.
[4]  邱志平, 林火南. 可加布朗运动样本轨道的重分形分析 [J]. 福建师范大学学报(自然科学版), 2004(4):14-19.doi:10.3969/j.issn.1000-5277.2004.04.004.
[5]  OREY S, TAYLOR S J. How often on a Brownian path does the law of iterated logarithm fail [J]. Proceedings of the London Mathematical Society, 1974(1):174-192.doi:10.1112/plms/s3-28.1.174.
[6]  黄群, 林火南. 布朗单样本轨道的重分形分析 [J]. 福建师范大学学报(自然科学版), 2003(2):1-8.doi:10.3969/j.issn.1000-5277.2003.02.001.
[7]  KHOSHNEVISAN D, XIAO Y M. Level sets of additive Lévy processes [J]. Annals of Probability, 2002(1):62-100.
[8]  FALCONER K J. Fractal geometry-mathematical foundations and application [M]. New York:John Wiley and Sons, Inc, 1990.
[9]  DEMBO A, PERES Y, ROSEN J. Thick points for spatial Brownian motion:Multifractal analysis of occupation measure [J]. Annals of Probability, 2000(1):1-35.
[10]  TRICOT C. Two definitions of fractal dimension [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1982(1):57-74.doi:10.1017/S0305004100059119.
[11]  XIAO Yi-min. Packing dimension, Hausdorff dimension and Cartesian product sets [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1996(3):535-546.doi:10.1017/S030500410007506X.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133