全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单位圆上调和拟共形映照的复特征估计

DOI: 10.11830/ISSN.1000-5013.2010.04.0476

Keywords: 调和映照, 拟共形映照, 伸缩商, 偏差估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

设f(x)=exp[iγ(x)]为单位圆周D到自身上的保向同胚映照,w=P[f](z)是单位圆D到自身上的单叶调和函数,f(x)为边界值.研究边界函数f(x),得到Jw的一个良好估计.当w为调和拟共形映照时,对其复特征|w w|进行估计.

References

[1]  PAVLOVIC M. Boundary correspondence under harmonic quasiconformal homeomorphisma of the unit disk [J]. Ann Acad Sci Fenn (Series A1):Math, 2002(2):365-372.
[2]  KALAJ D. Quasiconformal harmonic functions between convex domains [J]. Publications De L’Institut Mathématique, 2004, (90):3-20.doi:10.2298/PIM0476003K.
[3]  PARTYKA D, SAKAN K. On an asymptotically sharp variant of Heinz’s inequality [J]. Ann Acad Sci Fenn (Series A1):Math, 2005(1):167-182.
[4]  PARTYKA D, SAKAN K. On bi-lipschitz type inequalitites for quasiconformal harmonic mappings [J]. Ann Acad Sci Fenn (Series A1):Math, 2007(2):579-594.
[5]  BEUELING A L, AHLFORS V. The boundary correspondence under quasiconformal mapping [J]. Acta Mathematica, 1956(1):124-142.
[6]  LETHO O. Univalent functions and teichmuller spaces [M]. New York:springer-verlag, 1987.
[7]  吴瑞溢, 黄心中. Salagean类单叶调和函数的特征 [J]. 华侨大学学报(自然科学版), 2008(2):308-311.
[8]  CLUNIE J, SHEILl-SMALL T. Harmonic univalent functions [J]. Ann Acad Sci Fenn (Series A1):Math, 1984(1):3-25.
[9]  韩雪, 黄心中. 两类单叶调和函数的偏差估计 [J]. 华侨大学学报(自然科学版), 2008(4):618-621.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133