全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无源控制的超混沌Chen系统的自适应同步

DOI: 10.11830/ISSN.1000-5013.2010.04.0378

Keywords: 超混沌Chen系统, 同步, 无源控制, 自适应控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

在不同初始条件下,提出一种基于无源控制理论的控制方法,实现具有参数不确定性的两超混沌Chen系统的自适应同步.通过引入自适应控制,在线估计系统的参数,并设计一个自适应无源控制器,使两系统的同步误差方程转化为无源系统.根据无源系统理论,系统的动态误差方程将稳定于状态空间原点,即两超混沌Chen系统完全同步.仿真结果表明,所设计的控制器简单明了,控制方法有效.

References

[1]  PARK J H. Adaptive synchronization of hyperchaotic Chen system with uncertain parameters [J]. Chaos, Solitons & Fractals, 2005(3):959-964.doi:10.1016/j.chaos.2005.02.002.
[2]  HUANG Li-lian, FENG Ru-peng, WANG Mao. Synchronization of uncertain chaotic systems with perturbation based on variable structure control [J]. Physics Letters A, 2006, (3/4):197-200.
[3]  CHEN H S. Global chaos synchronization of new chaotic systems via nonlinear control [J]. Chaos, Solitons & Fractals, 2005(4):1245-1251.
[4]  ZHANG Hao, MA Xi-kui. Synchronization of uncertain chaotic systems with parameters perturbation via active control [J]. Chaos, Solitons & Fractals, 2004(1):39-47.doi:10.1016/j.chaos.2003.09.014.
[5]  YU Wen. Passive equivalence of chaos in Lorenz system [J]. IEEE Transactions on Circuits and Systems Part I:Fundamental theory and Applications, 1999(7):876-878.doi:10.1109/81.774240.
[6]  BYRNES C I, ISIDORI A, WILLEMS J C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems [J]. IEEE Transactions on Automatic Control, 1991, (11):1228-1240.doi:10.1109/9.100932.
[7]  LI Y X, TANG W K S, CHEN G R. Generating hyperchaos via state feedback control [J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, (10):3367-3375.doi:10.1142/S0218127405013988.
[8]  WANG Bo, WEN Guang-jun. On the synchronization of a class of chaotic systems based on backstepping method [J]. Physics Letters A, 2007(1):35-39.doi:10.1016/j.physleta.2007.05.030.
[9]  CHEN F X, ZHANG W D. LMI criteria for robust chaos synchronization of a class of chaotic systems [J]. Nonlinear Analysis-Theory Methods and Applications, 2007, (12):3384-3393.doi:10.1016/j.na.2006.10.020.
[10]  LIN W. Feedback stabilization of general nonlinear control systems:A passive system approach [J]. Systems & Control Letters, 1995(1):41-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133