PARK J H. Adaptive synchronization of hyperchaotic Chen system with uncertain parameters [J]. Chaos, Solitons & Fractals, 2005(3):959-964.doi:10.1016/j.chaos.2005.02.002.
[2]
HUANG Li-lian, FENG Ru-peng, WANG Mao. Synchronization of uncertain chaotic systems with perturbation based on variable structure control [J]. Physics Letters A, 2006, (3/4):197-200.
[3]
CHEN H S. Global chaos synchronization of new chaotic systems via nonlinear control [J]. Chaos, Solitons & Fractals, 2005(4):1245-1251.
[4]
ZHANG Hao, MA Xi-kui. Synchronization of uncertain chaotic systems with parameters perturbation via active control [J]. Chaos, Solitons & Fractals, 2004(1):39-47.doi:10.1016/j.chaos.2003.09.014.
[5]
YU Wen. Passive equivalence of chaos in Lorenz system [J]. IEEE Transactions on Circuits and Systems Part I:Fundamental theory and Applications, 1999(7):876-878.doi:10.1109/81.774240.
[6]
BYRNES C I, ISIDORI A, WILLEMS J C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems [J]. IEEE Transactions on Automatic Control, 1991, (11):1228-1240.doi:10.1109/9.100932.
[7]
LI Y X, TANG W K S, CHEN G R. Generating hyperchaos via state feedback control [J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, (10):3367-3375.doi:10.1142/S0218127405013988.
[8]
WANG Bo, WEN Guang-jun. On the synchronization of a class of chaotic systems based on backstepping method [J]. Physics Letters A, 2007(1):35-39.doi:10.1016/j.physleta.2007.05.030.
[9]
CHEN F X, ZHANG W D. LMI criteria for robust chaos synchronization of a class of chaotic systems [J]. Nonlinear Analysis-Theory Methods and Applications, 2007, (12):3384-3393.doi:10.1016/j.na.2006.10.020.
[10]
LIN W. Feedback stabilization of general nonlinear control systems:A passive system approach [J]. Systems & Control Letters, 1995(1):41-52.