全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

调和拟共形映照双曲雅可比的偏差性质

DOI: 10.11830/ISSN.1000-5013.2010.03.0351

Keywords: 调和映照, 拟共形映照, 双曲雅可比, 双曲面积

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究两类调和拟共形映照双曲雅可比和双曲面积的偏差性质,给出上半平面到自身上的欧氏调和拟共形映照双曲雅可比的精确界限,以及达到极值的函数.研究双曲调和拟共形映照双曲雅可比的偏差估计,并应用于两类调和拟共形映照双曲面积的偏差估计.结果表明,这两类调和拟共形照是非爆破的.

References

[1]  陈行堤, 黄心中. 拟共形映照的爆破集问题 [J]. 华侨大学学报(自然科学版), 2001(2):111-116.doi:10.3969/j.issn.1000-5013.2001.02.001.
[2]  CHEN Xing-di, HUANG Xin-zhong. On the estimates of hyperbolic area distortion of quasiconformal mappings [J]. Chinese Quarterly Journal of Mathematics, 2007(1):137-142.doi:10.3969/j.issn.1002-0462.2007.01.023.
[3]  韩雪, 黄心中. 拟共形映照的双曲面积偏差 [J]. 华侨大学学报(自然科学版), 2007(4):433-436.doi:10.3969/j.issn.1000-5013.2007.04.026.
[4]  KALAJ D, PAVLOVIC M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005(1):159-165.
[5]  AHLFORS L V. Conformal invariants:Topics in geometric function theory [M]. New York:mcgraw-hill Book Company, inc, 1973.
[6]  WAN T. Constant mean curvature surface, harmonic maps and universal Teichmüller space [J]. Journal of Differential Geometry, 1992(3):643-657.
[7]  YAO Guo-wu. Convergence of harmonic maps on the Poincaré disk [J]. Proceedings of the American Mathematical Society, 2004(8):2483-2493.doi:10.1090/S0002-9939-04-07465-9.
[8]  AHLFORS L V. Complex analysis [M]. New York:McGraw-Hill Book Company, Inc, 1979.
[9]  LEWY H. On the non-vanishing of the Jacobian in certain one to one mapings [J]. Bulletin of the American Mathematical Society, 1936, (10):689-692.
[10]  PARTYKA D, SAKAN K I. On an asymptotically sharp variant of Heinz’s inequality [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005(1):167-182.
[11]  ASTALA K. Area distortion of quasiconformal mappings [J]. Acta Mathematica, 1994(1):37-60.
[12]  CHEN Xing-di, FANG Ainong. Harmonic Teichmüller mappings [J]. Proceedings of the Japan Academy, Series A Mathematical Sciences, 2006(7):101-105.
[13]  KELINGOS J A. Distortion of hyperbolic area under quasiconformal mappings [J]. Duke Mathematical Journal, 1974(1):127-139.
[14]  PORTER R M, RES?NDIS L F. Quasiconformally explodable sets [J]. Complex Variables, 1998(4):379-392.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133