全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有时滞的神经网络模型的分支分析

DOI: 10.11830/ISSN.1000-5013.2012.06.0694

Keywords: 神经网络, 稳定性, Hopf分支, 时滞

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一类具有时滞的神经网络模型.通过分析系统的特征方程及考虑不同的时滞对系统动力学行为的影响,得到系统的平衡点稳定及Hopf分支产生的条件.数值模拟验证了所得理论分析的结果的正确性,补充了前人的研究成果.

References

[1]  HOPFIELD J.Neurons with graded response have collective computional properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences USA,1984,81(10):3088-3092.
[2]  XU Chang-jin,TANG Xianhua,LIAO Mao-xin.Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays[J].Neural Networks,2010,23(7):872-880.
[3]  XU Chang-jin,HE Xiao-fei,LI Pei-luan.Global existence of periodic solutions in a six-neuron BAM neural network model with discrete delays[J].Neurocomputing,2011,74(17):3257-3267.
[4]  XU Chang-jin,TANG Xianhua,LIAO Mao-xin.Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete delays[J].Neurocomputing,2011,74(5):689-707.
[5]  ZHANG Zheng-qiu,YANG Yan,HUANG Ye-sheng.Global exponential stability of interval general BAM neural networks with reaction-diffusion terms and multiple time-varying delays[J].Neural Networks,2011,24(5):457-465.
[6]  GUO Shang-jiang,YUAN Yuan.Delay-induced primary rhythmic behavior in a two-layer neural network[J].Neural Networks,2011,24(1):65-74.
[7]  GUO Shang-jiang.Equivariant Hopf bifurcation for functional differential equations of mixed type[J].Applied Mathematics Letters,2011,24(5):724-730.
[8]  刘云辉,李钟慎.改进型模糊神经网络模型的构造[J].华侨大学学报:自然科学版,2010,31(3):256-259.
[9]  HUANG Chuang-xia,HE Yi-gang,HUANG Li-hong,et al.Hopf bifurcation analysis of two neurons with three delays[J].Nonlinear Analysis: Real World Applications,2007,8(3):903-921.
[10]  YUAN Shao-liang,LI Xue-mei.Stability and bifurcation analysis of an annular delayed neural network with self-connection [J].Neurocomputing,2010,73(16/17/18):2905-2912.
[11]  OLIEN L,BELAIR J.Bifurcations,stability,and monotonicity properties of a delayed neural networks model[J].Physica D,1997,102(3/4):349-363.
[12]  RUAN Shi-gui,WEI Jun-jie.On the zero of some transcendential functions with applications to stability of delay differential equations with two delays[J].Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis,2003,10(1):863-874.
[13]  HALE J K,VERDUYN-LUNEL S M.Introduction to functional differential equations[M].New York:Springer-Verlag,1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133