MILMAN D P. On some criteria for the regularity of spaces of the type (B) [J]. Doklady Akademii Nauk SSSR, 1938.243-246.
[2]
PETTIS B J. A proof that every uniformly convex spaces is reflexive [J]. Duke Mathematical Journal, 1939(2):249-253.
[3]
DAY M M. Reflexive spaces not isomorphic to unifornly convex Banach spaces [J]. Bulletin of the American Mathematical Society, 1941(4):313-317.doi:10.1090/S0002-9904-1941-07451-3.
[4]
MILMAN V D. Geometric theory of Banach spaces (Ⅱ):Geometry of the unit sphere [J]. Russian Mathematical Surveys, 1971(6):79-163.
[5]
DAY M M. Normed linear spaces [D]. New York:springer-verlag, 1973.
[6]
TROYANSKI S. On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces [J]. Studia Mathematica, 1972.125-138.
[7]
DEVILLE R, GODEFROY G, ZIZLER V. Smoothness and renormings in Banach spaces [M]. New York:John Wiley and Sons, Inc, 1993.
[8]
HAJEK P, JOHANIS M. Characterization of reflexivity by equivalent renorming [J]. Journal of Functional Analysis, 2004(1):163-172.doi:10.1016/S0022-1236(03)00264-7.
[9]
ODELL E, SCHLUMPRECHT T. Asymptotic properties of Banach spaces under renormings [J]. Journal of the American Mathematical Society, 1998(1):175-188.doi:10.1090/S0894-0347-98-00251-3.
CHENG Li-xin, CHENG Qing-jin, LUO Zheng-hua. On some new characterizations of weakly comapct sets in Banach spaces [J]. Studia Mathematica, 2010.155-166.doi:10.4064/sm201-2-3.
[12]
CHENG Li-xin, CHENG Qing-jin, LUO Zheng-hua. Every weakly compact convex set can be uniformly embedded into a reflexive space [J]. Acta Math Sin (Engl Ser), 2009(7):1109-1112.doi:10.1007/s10114-009-7545-5.