全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

两企业竞争与合作的离散动力学模型的周期解

DOI: 10.11830/ISSN.1000-5013.2012.03.0337, PP. 337-341

Keywords: 企业竞争,企业合作,离散系统,动力学模型,周期解,重合度

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一个两企业竞争与合作的离散动力学模型:x1(k+1)=x1(k)exp{r1(k)-a1(k)x1(k)-b1(k)×(x2(k)-c2(k))2},x2(k+1)=x2(k)exp{r2(k)-a2(k)x2(k)+b2(k)(x1(k)-c1(k))2},k∈Z的动力学行为.运用重合度及相关的延拓定理和先验估计,得到系统存在正周期解的易于检验的充分条件.

References

[1]  田秀华, 聂清凯, 夏健明. 商业生态系统视角下企业互动关系模型构建研究 [J]. 南方经济, 2006(4):50-57.doi:10.1016/j.ica.2010.01.015.
[2]  XU Rui, CHEN Lan-sun, HAO Fei-long. Periodic solution of a discrete time Lotka-Volterra type food-chain model with delays [J]. Applied Mathematics and Computation, 2005(1):91-103.
[3]  ZHANG Ke-jun, WEN Zhao-hui. Dynamics of a discrete three species food chain system [J]. Int J Comput Math Sci, 2011(1):13-15.
[4]  ZHANG R Y, CHEN Y, WU J. Periodic solutions of a single species discrete population model with periodic harvest/stock [J]. Computers and Mathematics with Applications, 2000, (1/2):77-90.
[5]  ZHANG Wei-ping, ZHU De-ming, BI Ping. Multiple positive periodic solutions of a delayed discrete predator-prey system with type Ⅳ functional responses [J]. Applied Mathematics Letters, 2007, (10):1031-1038.doi:10.1016/j.aml.2006.11.005.
[6]  FAN Meng, WANG Ke. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J]. Mathematical and Computer Modelling, 2002, (9/10):951-961.
[7]  WIENER J. Differential equations with piecewise constant delays [A]. New York:crc Press, 1984.
[8]  GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations [M]. New York:springer-verlag, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133