全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类单位圆盘上单叶调和映照的延拓定理

DOI: 10.11830/ISSN.1000-5013.2013.06.0701

Keywords: 单叶调和映照, 拟共形映照, 调和拟共形延拓, 最大伸缩商

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究单位圆盘D={z||z|<1}上调和映照类SHK(m,n,α,β)的调和延拓与调和拟共形延拓问题,具体给出该类映照到单位圆盘外的单叶保向调和延拓;除n=0以外,同时给出该类映照的调和拟共形延拓.作为整个平面上的拟共形映照,最后给出了最大伸缩商估计.

References

[1]  PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the uint disk[J].Ann Acad Sci Fenn Math,2002,27(2):365-372.
[2]  KALAJ D.Quasiconformal harmonic functions between convex domains[J].Publications De L’Institut Mathematique,2004,76(90):3-20.
[3]  黄心中.单位圆上的调和拟共形同胚[J].数学年刊:A辑,2008,29(4):519-524.
[4]  谢志春,黄心中.一类Nehari函数族的拟共形延拓与系数偏差[J].华侨大学学报:自然科学报,2011,32(3):343-347.
[5]  REICH E.On extremal quasiconformal extensions of conformal mappings[J].Israel J Math,1977,28(1/2):91-97.
[6]  CLUNIE J,SHELL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984(9):3-25.
[7]  SEKER B.Salagean-type harmonic univalent functions[J].International Journal of the physical Sciences,2011,6(4):801-807.
[8]  AHLFORS L,WEILL G.A uniqueness theorem for Beeltrami equations[J].Proc Amer Math Soc,1962,13(6):975-978.
[9]  杨宗信,陈纪修.Nehari函数族的偏差定理与拟共形延拓[J].数学年刊,2004,25(6):695-704.
[10]  AHLFORS L.Lectures on quasiconformal mappings[M].Providence: American Mathematical Society,2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133