OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
一类单位圆盘上单叶调和映照的延拓定理
DOI: 10.11830/ISSN.1000-5013.2013.06.0701
Keywords: 单叶调和映照, 拟共形映照, 调和拟共形延拓, 最大伸缩商
Abstract:
研究单位圆盘D={z||z|<1}上调和映照类SHK(m,n,α,β)的调和延拓与调和拟共形延拓问题,具体给出该类映照到单位圆盘外的单叶保向调和延拓;除n=0以外,同时给出该类映照的调和拟共形延拓.作为整个平面上的拟共形映照,最后给出了最大伸缩商估计.
References
[1] | PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the uint disk[J].Ann Acad Sci Fenn Math,2002,27(2):365-372.
|
[2] | KALAJ D.Quasiconformal harmonic functions between convex domains[J].Publications De L’Institut Mathematique,2004,76(90):3-20.
|
[3] | 黄心中.单位圆上的调和拟共形同胚[J].数学年刊:A辑,2008,29(4):519-524.
|
[4] | 谢志春,黄心中.一类Nehari函数族的拟共形延拓与系数偏差[J].华侨大学学报:自然科学报,2011,32(3):343-347.
|
[5] | REICH E.On extremal quasiconformal extensions of conformal mappings[J].Israel J Math,1977,28(1/2):91-97.
|
[6] | CLUNIE J,SHELL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984(9):3-25.
|
[7] | SEKER B.Salagean-type harmonic univalent functions[J].International Journal of the physical Sciences,2011,6(4):801-807.
|
[8] | AHLFORS L,WEILL G.A uniqueness theorem for Beeltrami equations[J].Proc Amer Math Soc,1962,13(6):975-978.
|
[9] | 杨宗信,陈纪修.Nehari函数族的偏差定理与拟共形延拓[J].数学年刊,2004,25(6):695-704.
|
[10] | AHLFORS L.Lectures on quasiconformal mappings[M].Providence: American Mathematical Society,2006.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|