全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

木聚糖酶与单壁碳纳米管的吸附分子动力学模拟

DOI: 10.11830/ISSN.1000-5013.2013.06.0667

Keywords: 碳纳米管, 固定化, 纳米技术, 分子动力学, 木聚糖酶, 物理吸附

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过分子动力学模拟的方法,从原子尺度研究木聚糖酶与单壁碳纳米管(SWNTs)相互吸附的动力学过程和酶分子特性.通过观察动力学轨迹和定量分析,发现SWNTs和酶分子逐渐靠近最后稳定的吸附在一起,且酶分子的不同部位与SWNTs吸附动力学过程存在差异.SWNTs表面的原子构象在吸附过程中经历了不同程度的调整,且蛋白质整体构象因受到SWNTs的影响也有所改变.CNT1体系中芳香族氨基酸TRP120和TYR122 的芳香环正好与SWNTs表面平行,CNT2体系中蛋白质的C端最终吸附在SWNTs表面,使得酶和SWNTs结合的更加稳定.综合考虑认为CNT2体系为最佳吸附体系.

References

[1]  ZHANG P,HENTHORN D B.Synthesis of PEGylated single wall carbon nanotubes by a photoinitiated graft from polymerization[J].AIChE J,2010,56(6):1610-1615.
[2]  MATSUURA K,SAITO T,OKAZAKI T.Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions[J].Chem Phys Lett,2006,429(4):497-502.
[3]  ASURI P,KARAJANAGI S S,SELLITTO E,et al.Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations[J].Biotechnol Bioeng,2006,95(5):804-811.
[4]  JOHNSON R R,KOHLMEYER A,JOHNSON A T C.Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics[J].Nano Lett,2009,9(2):537-541.
[5]  FRILING S R,NOTMAN R,WALSH T R.Probing diameter-selective solubilisation of carbon nanotubes by reversible cyclic peptides using molecular dynamics simulations[J].Nanoscale,2010,2:98-106.
[6]  PHILLIPS J C,BRAUN R,WANG W.Scalable molecular dynamic with NAMD[J].Comput Chem,2005,26(16):1781-1802.
[7]  HUMPHREY W,DALKE A,SCHULTEN K.VMD: Visual molecular dynamics[J].J Mol Graphics,1996,14(1):33-38.
[8]  MACKARREL J,ASHFORD A D,BELLOT D.All atom empirical potential for molecular modeling and dynamics studies of proteins[J].J Phys Chem,1998,102(18):3586-3616.
[9]  WALTHER J H,JAFFE R,HALICIOGLU T,et al.Carbon nanotubes in water: Structural characteristics and energetics[J].J Phys Chem B,2001,105(41):9980-9987.
[10]  WEI Tao,MARCELO A,SZLEIFER C I.Molecular dynamics simulation of lysozyme adsorption/desorption on hydrophobic surfaces[J].J Phys Chem B,2012,116(34):10189-10194.
[11]  DARDEN T,YORK D,PEDERSEN L.Particle mesh ewald: An N-log N method for ewald sums in large systems[J].J ChemPhys,1993,98(12):10089-10092.
[12]  RAFFAINI G,GANAZZOLI F.Molecular dynamics simulation of the adsorption of a fibronectin module on a graphite surface[J].Langmuir,2004,20(18):3371-3378.
[13]  GE Cui-cui,DU Jiang-feng,ZhAO Li-na,et al.Binding of blood proteins to carbon nanotubes reduces cytotoxicity PNAS,2011,108(41):16968-16973.
[14]  SHWETA S,MUNISHWAR N G.Simultaneous refolding,purification and immobilization of xylanase with multi-walled carbon nanotubes[J].Biochimica et Biophysica Acta,2008,1784(2):363-367.
[15]  IIJIMA S.Helical microtubes of graphitic carbon[J].Nature,1991,354:56 -58.
[16]  SHIM M,KAM N W,CHEN R J.Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition[J].Nano Lett,2002,2(4):285-288.
[17]  CHEN R J,BANGSARURTIP S,DROUVALAKIS K A.Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors[J].Proc Natl Acad Sci USA,2003,100(9):4984-4989.
[18]  ZHANG Y B,KANUNGO M,HO A J,et al.Functionalized carbon nanotubes for detecting viral proteins[J].Nano Lett,2007,7(10):3086-3091.
[19]  BAUGHMAN R H,CUI C X,ZAKHIDOV A A.Carbon nanotube actuators[J].Science,1999,284(5418):1340-1344.
[20]  KAM N W S,JESSOP T C,WENDER P A,et al.Nanotube molecular transporters:internalization of carbon nanotube-protein conjugates into mammalian cells[J].J Am Chem Soc,2004,126(22):6850-6851.
[21]  KAM N W S,LIU Z,DAI H.Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing[J].J Am Chem Soc,2005,127(36):12492-12493.
[22]  LAURENT N,HADDOUB R,FLITSCH S L.Enzyme catalysis on solid surfaces[J].Trends Biotechnol,2008,26(6):328-337.
[23]  KIM J B,GRATE J W,WANG P.Nanostructures for enzyme stabilization[J].Chem Eng Sci,2006,61(3):1017-1026.
[24]  BAI S,GUO Z,LIU W,et al.Resolution of(±)-menthol by immobilized Candida rugosa lipase on superparam-magnetic nanoparticles[J].Food Chem,2006,96(1):1-7.
[25]  DYAL A,LOOS K,NOTO M.Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles[J].J Am Chem Soc,2003,125(7):1684-1685.
[26]  HUISHAN Tan,WEI Feng,JI Pei-jun.Lipase immobilized on magnetic multi-walled carbon nanotubes[J].Bioresource Technology,2012,115:172-176.
[27]  KIM J,GRATE J W,WANG P.Nanobiocatalysis and its potential applications[J].Trends Biotechnol,2008,26(11):639-646.
[28]  GAI Y,KYRATZIS I.Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethy-3-(3-dimethylaminopropyl)carbodiimidea critical assessment[J].Bioconjugat Chem,2008,19(10):1945-1950.
[29]  KARAJANAGI S S,VERTEGEL A A,KANE R S,et al.Structure and function of enzymes adsorbed onto single-walled carbon nanotubes[J].Langmuir,2004,20(26):11594-11599.
[30]  CANG-RONG J T,PASTORIN G.The infiuence of carbon nanotubes on enzyme activity and structure:investigation of different immobilization procedures through enzyme kinetics and circular dichroism stuies[J].Nanotechnology,2009,20(25):255102.
[31]  BOMBOI F,BONINCONTRO A,LA-MESA C,et al.Interactions between single-walled carbon nanotubes and lysozyme[J].J Colloid Interface Sci,2011,355(2):342 -347.
[32]  GOPALAKRISHNANR, BALAMURUGAN K. Ettayapuram ramaprasa azhagiya singam adsorption of collagen onto single walled carbon nanotubes: A molecular dynamics investigation[J].Phys Chem Chem Phys,2011,13(28):13046-13057.
[33]  SHEN Jia-Wei,WY Tao,WANG Qi.Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces[J].Biomaterials,2008,29(28):3847-3855.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133