全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于数据分布的SVM核选择方法

DOI: 10.11830/ISSN.1000-5013.2013.05.0525

Keywords: 支撑向量机, 核函数, 核选择, 数据分布, 多维尺度

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目前支撑向量机(SVM)核函数的选择没有统一规则的现状,提出一种结合数据分布特征进行SVM核选择的方法.首先,采用多维尺度(MDS)分析方法对高维数据集合理降维,提出判断数据集是否呈圆球分布的算法;然后,在得到数据集分布特征的基础上进行SVM核选择,以达到结合数据分布特征合理选择SVM核函数的目的.实验结果表明:呈圆球分布的数据集采用球面坐标核进行分类,识别率达到100%,训练时间最短,优于采用高斯核SVM及多项式核SVM的分类效果.

References

[1]  YU Kai,ZHANG Tong,GONG Yi-hong.Nonlinear learning using local coordinate coding[J].NIPS,2009,26(8):342-356.
[2]  VAPNIK V.The nature of statitiscal learning theory[M].New York:Spring Verlag Press,1995:4-15.
[3]  WANG Wen-jian,XU Zong-ben,LU Wei-zhen,et al.Determination of the spread parameter in the Gaussian kernel for classification and regression[J].Neurocomputing,2003,55(3/4):643-663.
[4]  孙建涛,郭崇慧,陆玉昌,等.多项式核支持向量机文本分类器泛化性能分析[J].计算机研究与发展,2004,41(8):1321-1326.
[5]  张莉,周伟达,焦李成.一类新的支撑矢量机核[J].软件学报,2002,13(4):713-718.
[6]  WANG Jin-jun,YANG Jian-chao,YU Kai,et al.Locality constrained linear coding for image classification[J].CVPR,2010,15(3):456-470.
[7]  WANG Xiao-ming,CHUNG Fu-lai,WANG Shi-tong.Theoretical analysis for solution of support vector data description[J].Neural Networks,2011,24(4):360-369.
[8]  ZAFEIRIOU S,TEFAS A,PITAS I.Minimum class variance support vector machines[J].IEEE Transanctions on Image Processing,2007,16(10):2551-2564.
[9]  ZHOU Xi,CUI Na,LI Zhen,et al.Hierarchical gaussianization for image classification[J].ICCV,2009,18(3):79-90.
[10]  HUANG Kai-zhu,YANG Hai-qing,KING I,et al.Maxi-min margin machine: Learning large margin classifiers locally and globally[J].IEEE Transanctions on Neural Networks,2008,19(2):260-272.
[11]  CHOI Y S.Least squares one-class support vector machine[J].Pattern Recognition Letters,2009,30(13):1236-1240.
[12]  GAO Sheng-hua,TSANG I W H,CHIA L T,et al.Local features are not lonely laplacian sparse coding for image classification[J].CVPR,2010,18(6):126-138.
[13]  周伟达,张莉,焦李成.一种改进的推广能力度量标准[J].计算机学报,2003,26(5):598-604.
[14]  WU Si,AMARI S I.Conformal transformation of kernel functions: A data-dependent way to improve support vector machine classifiers[J].Neural Processing Letters,2002,15(1):59-67.
[15]  CHAPELLE O,VAPNIK V.Model selection for support vector machines[C]//Advances in Neural Information Processing Systems 12.Cambridge:MIT Press,2001:120-155.
[16]  VAPNIK V.The nature of statitiscal learning theory[M].New York:Spring-Verlag Press,1995:88-125.
[17]  COX T,COX M.Multidimensional Scaling[M].London:Chapman & Hall,1994:145-150.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133