2-范畴中拉回的等价定义
DOI: 10.11830/ISSN.1000-5013.2013.05.0596
Keywords: 2-范畴, 拉回, 积, 终对象
Abstract:
从已知的2-范畴S出发,构造两类2-范畴R和E,证明了S中的拉回,R的终对象和E中的积三者相互确定,从而给出2-范畴中拉回的等价定义.
References
[1] | EHRESMANN C.Cat’egories et structures[M].Paris: Dunod,1965:1-358.
|
[2] | BORCEUX F. Handbook of categorical algebra: Categories of sheaves[M]. Cambridge: Cambridge University Press,1994:281-324.
|
[3] | VITALE E M.The brauer and brauer-taylor of a symmetric monoidal category[J].Cahie-Rs de Topologie et Geometrie Differentielle Cate,1996,37(2):91-122.
|
[4] | VITALE E M.A Picard-Brauer exact sequence of categorical groups[J].Journal of Pure and Applied Algebra,2002,20(16):543-604.
|
[5] | NAKAOKA H.Cohomology theory in 2-categories[J].Theory and Applications of Categories,2008,20(16):543-604.
|
[6] | 沈婧芳.推出范畴的性质[D].武汉:华中师范大学,2006:1-21.
|
[7] | 沈婧芳,杨飞.加法范畴的推出范畴[J].华中师范大学学报:自然科学版,2008,42(3):343-345.
|
[8] | 连冠勤.Abel范畴的推出范畴的若干研究及其应用[D].福州:福建师范大学,2009:5-39.
|
[9] | 陈清华,薛蓉华,严益水.加法范畴的极限范畴是加法范畴[J].福建师范大学学报:自然科学版,2010,26(6):16-19.
|
[10] | DE JONG A J.The stacks project[EB/OL].[2012-10-19] http://stacks.math.columbia.edu/browse.
|
Full-Text