全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

节理岩体剪切强度的计算方法及其应用

DOI: 10.11830/ISSN.1000-5013.2013.05.0570

Keywords: 岩体力学, 节理岩体, 峰值剪切强度, 粗糙度, 起伏度

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据36组直剪试验结果,对基于起伏度和粗糙度等剪切强度公式进行对比,给出其建议适用性范围.研究结果表明:在只考虑起伏度时,Ladanyi-Archambault公式的计算结果更接近实际值;而只考虑粗糙度时,采用JRC-JMC模型和Grasselli改进公式进行预测更加合理;节理岩体的峰值剪切强度与法向应力有关,当法向应力较小时,节理面起伏度是节理岩体峰值强度的主要影响因素,而随着法向应力的增大,采用粗糙度计算结果与实际值相吻合.

References

[1]  李肖音,李建军,巫建军,等.粗糙岩石节理剪切强度的修正公式[J].河北理工学院学报,2005,27(1):4-8.
[2]  杜时贵,胡晓飞,郭霄,等.JRC-JCS模型与直剪实验对比研究[J].岩石力学与工程学报,2008,27(1):2747-2753.
[3]  汤海生,张鹏程,汪洋.水作用下岩体断裂强度的探讨[J].岩石力学与工程学报,2004,23(19):3337-3341.
[4]  肖卫国,兑关锁,朱玉萍,等.充填节理岩体本构模型研究[J].岩石力学与工程学报,2010,29(2):3463-3468.
[5]  徐磊,任青文.不同充填度岩石分形节理抗剪强度的数值模拟[J].煤田地质与勘察,2007,35(3):52-54.
[6]  陈记.岩石节理面剪切流变的实验研究[J].河海工学院报,2004,13(4):74-77.
[7]  BANDIS S,SC B,SC M.Experimrntal studies of scale effects of shear strength, and deformation of rock joints[D].Leeds:University of leeds,1980:32-33.
[8]  张林洪,朱云兰.现有结构面抗剪强度确定方法的评述及新方法的提出[J].昆明理工大学学报,2000,25(3):50-53.
[9]  夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002:94-119.
[10]  AMADEI B,WIBOWO J,STURE S.et al.Applicability of existing model to predict the behavior of replicas of natural fractures of welded tuff under different boundary conditions[J].Geotechnical and Geological Engineering,1998,16(2):79-128.
[11]  GRASSELLI G.Shear strength of rock joints based on quantified surface description[D].Switzerland:Swiss Federal Institute of Technology,2001:295-314.
[12]  GRASSELLI G,WIRTH J,EGGER P.Quantitative three-dimensional description of a rough surface and parameter evolution with shearing[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(6):789-800.
[13]  GRASSELLI G,EGGER P.Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(1):25-40.
[14]  朱小明,李海波,刘博,等.含二阶起伏体的模拟岩体节理试样剪切特性试验研究[J].岩土力学,2012,33(2):354-360.
[15]  朱小明,李海波,刘博,等.含一阶和二阶起伏体节理剪切强度的试验研究[J].岩石力学与工程学报,2011,30(9):1810-1818.
[16]  易成,郝彬,朱红光,等.裂隙岩体的一体两介质模型抗剪性能研究[J].岩石力学与工程学报,2011,30(6):1207-1215.
[17]  PATTON F D. Multiple modes of shear failure in rock[C]//Proceedings of the First Congress of International Society of Rock Mechanics.Lisbon:[s.n.],1996:509-513.
[18]  吕则欣,陈华兴.岩石强度理论研究[J].西部探矿工程,2009,1(1):5-8.
[19]  LADANYI B,ARCHAMBAULT G.Simulation of the shear behavior of a jointed rock mass[C]//Proceedings of the 11th US Symposium on Rock Mechanics and Rock Engineering.Berkeley:[s.n.],1977,10(1/2):1-54.
[20]  HOEK E,BRAY J W.岩石边坡工程[M].北京:冶金工业出版社,1983:92-108.
[21]  唐志成,夏才初,宋英龙,等.人工模拟节理缝制剪胀模型及峰值抗剪强度分析[J].岩石力学与工程学报,2012,31(1):3038-3044.
[22]  唐志成,夏才初,宋英龙,等.Grasselli节理峰值抗剪强度公式再探[J].岩石力学与工程学报,2012,31(2):356-364.
[23]  International Society for Rock Mechnics.Suggestedmethods for the quantiative description of discontinuities in rock masses[J].International Journal of Rock Mechnics and Mining Science and Geomechanics Abstracts,1978,15(2):319-368.
[24]  赵坚.岩石节理剪切强度的JRC-JMC新模型[J].岩石力学与工程学报,1998,17(4):349-357.
[25]  宋建波,张卓元,于远忠,等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002:78-92.
[26]  唐志成,夏才初,黄继辉,等.节理峰值后归一位移软化模型[J].岩石力学与工程学报,2011,32(7):2013-2024.
[27]  杜时贵,胡晓飞,郭霄,等.JRC-JCS模型和JRC-JMC模型与直剪试验对比研究[J].岩石力学与工程学报,2008,27(增刊1):2747-2753.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133