DAVID A C B,AMANDA LJ,SCHAEFFER R D,et al.Dynameomics: Mass annotation of protein dynamics and unfolding in water by high-throughput atomistic molecular dynamics simulations[J].Protein Eng Des Sel,2008,21(6):353-368.
ERIC D M,WILLIAM W P,VALERIE D.Temperature dependence of the flexibility of thermophilic and mesophilic flavoenz ymes of the niteoedu-ctase fold[J].Protein Eng Des Sel,2010,23(5):327-336.
[4]
TATYANA B M,ANNA V G,MARIA G K,et al.Flexibility and mobility in mesophilic and thermophilic homologous proteins from molecular dynamics and fold unfold method[J].J Bioinformatics and Computational Bio,2010,8(3):377-394.
[5]
SANGEETA K,DEBJANI R.Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation[J].J Molecular Graphics and Modeling,2009,27(8):871-880.
[6]
PIEPER U,KAPADIA G,MEVARECH M,et al.Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon[J].Structure,1998,16(1):75-88.
[7]
FIORAVANTI E,VELLIEUX F M,AMARA P,et al.Specific radiation damage to acidic residues and its relation to their chemical and structural environment[J].J Synchrotron Rad,2007,14(1):84-91.
[8]
ANDY W,PATRIK J,RONNALD V,et al.Structural and biochemical characterization of a halophilic archaeal alkaline phosphatase[J].J Mol Bio,2010,400(1/2):52-62.
[9]
ALOJORO Y,TAKEFUMI I,MASAHIRO K,et al.Molecular mechanism of distinct salt-dependent enzyme activity of two halophilic nucleoside diphosphatekinases[J].Biophysical Journal,2009,96(11):4692-4700.
[10]
KUSHNER D J.Life in high salt and solute concentrations[M].London:Academic Press,1978:317-368.
[11]
KAMEKURA M.Diversity of extremely halophilic bacteria[J].Extremophiles,1998,2(3):289-295.
[12]
DOMINIQUE M,CHRISTINE E,GIUSEPPE Z.Halophilic adaptation of enzymes[J].Extremophiles,2000,4(2):91-98.
[13]
VENTOSA A J,NIETO J J,OREN A.Biology of moderatelyhalophilic aerobic bacteria[J].Microbiolol Biol Rev,1998,62(2):504-544.
[14]
GALINSKI E A,TRUPER H G.Microbial behaviour in salt-stresed ecosystems[J].FEMS Microbiol Rev,1994,15(2/3):95-108.
[15]
AHARON O.Microbial life at high salt concentrations: Phylogenetic and metabolic diversity[J].Saline Systems,2008,4(2):(doi:10.1186/1746-1448-4-2).
[16]
BYSTROFF C,OATLEY S J,KRAUT J.Crystal structures of Escherichia coli dihydrofolate reductase: The NADP+ holoenzyme and the folate-NADP+ ternary complex: Substrate binding and a model for the transition state[J].Biochemistry,1990,29(13):3263-3277.
[17]
ALEXANDRA B,BJORN D,DIMITRIOS M,et al.Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface[J].J Mol Biol,2004,341(5):1215-1226.
[18]
WANG J,STIEGLITZ K A,KANTROWITZ E R.Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosph-atase[J].Biochemistry 2005,44(23):8378-8386.
[19]
GAURI M,ANITA A,DIVYA D,et al. Crystal structure of the Bacillus anthracis nucleoside diphospate kinase and its characterization reveals an enzyme adapted to perform under stress conditions[J].Proteins,2009,76(2):496-506.
[20]
PHILLIPS J C,BRAUN R,WANG W.Scalable molecular dynamic with NAMD[J].Comput Chem,2005,26(16):1781-1802.
MACKARREL J,AD ashford,BELLOT D,et al.All-atom empirical potential for molecular modeling and dynamics studies of proteins[J].J Phys Chem,1998,102(18):3586-3616.
[23]
DARDEN T,YORK D,PEDERSEN L.Particle mesh ewald: An N~log(N)method for ewald sums in large systems[J].J Chem Phys,1993,98(12):10089-10092.
[24]
COSTENARO L,ZACCAI G,EBEL C.Link between protein-solvent and weak protein-protein interactions gives insight into halophilic adaptation[J].Biochemistry,2002,41(44):13245-13252.
[25]
TARDIEU A,BONNETé F,FINET S,et al.Understanding salt or PEG induced attractive interactions to crystallize biological macromolecules[J].Acta Crystallogr Sect D Biol Crystallogr,2002,58(10):1549-1553.
[26]
TADEO X,LóPEZ-MéNDEZ B,TRIGUEROS T.Structural basis for the aminoacid composition of proteins from halophilic archea[J].PLoS Biol,2009,7(12):e1000257.
[27]
BENACHENHOU N,BALDACCI G.The genes for a halophilic glutamate dehydrogenase, sequene transcription and phylogenetic implications[J].Mol Gen Genet,1991,230(3):345-352.
[28]
BALDACCI G,GUINET F,TILLIT J,et al.Functional implications related to the gene structure of the elongation factor EF-Tu from Halobacterium marismortui[J].Nucl Acids Res,1990,18(3):507-511.
[29]
MEVARECH M F,FROLOW L M.Halophilic enzymes: Proteins with a grain of salt[J].Biophys Chem,2000,86(2/3):155-164.
[30]
EISENBERG H.Life in unusual environments: Progress in understanding the structure and function of enzymes from extreme halophilic bacteria[J].Arch Biochem Biophys,1995,318(1):1-5.
[31]
COQUELLE N,TALON R,JUERS D H.Gradual adaptive changes of a protein facing high salt concentrations[J].J Mol Biol,2010,404(3):493-505.
[32]
FROLOW F,HAREL M,SUSSMAN J L.Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin[J].Nat Struct Biol,1996,3(5):452-458.
SELIM C,BERNA S A,AZIZ A D,et al.Proteomic insight into phenolic adaptation of a moderately halophilic Halomona sp. strain AAD12[J].Can J Microbiol,2011,57(4):295-302.
[37]
LIANG Chen-hui,YI Wei,LI Bin.Case study of hypersaline organic wastewater treatment with SBBR process[J].Pollution Control Technology,1998,14(4):226-228.
[38]
BIRGE R R.Photophysics and molecular electronic applications of the rhodopsins[J].Annu Rev Phys Chem,1990,41:683-733.
[39]
SHI Hai-ping,SU Tao.Study on mcrobiol frmentation of cllecting for ply-β-hydroxybutyrate[J].Food and Fermentation Industries,1998,24(2):79-82.
[40]
EICHLER J.Biotechnological uses of archaeal extremozymes[J].Biotechnology Advances,2001,19(4):261-278.
[41]
WANG Shi-fen,YANG Jian.Treatment of petro-fermentation wastewater with high salt content[J].Water and Wastewater Engineering,1999,25(3):35-38.