DUREN P.Harmonic mappings in the plane[M].Cambridge:Cambridge University Press,2004:86-110
[4]
de BRANGES L.A proof of the Bieberbach conjecture[J].Acta Math,1985,154(1/2):137-152.
[5]
GREINER P.Geometric properties of harmonic shears[J].Comput Methods Funct Theory,2004,4(1):77-96.
[6]
LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(1):689-692.
[7]
HERNáNDEZ R,MARTíN M J.Stable geometric properties of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[8]
PONNUSAMY S,KALIRAJ A S.On the coefficient conjecture of clunie and sheil-small on univalent harmonic mappings [DB/OL][2014-03-22] .http://arxiv.org/abs/1403.5619.
[9]
ROGOSINSKI W.On the coefficients of subordinate functions[J].Proc London Math Soc,1990,42(1):237-248.
[10]
SHEIL-SMALL T.Constants for planar harmonic mappings[J].J London Math Soc,1990,42(1):237-248.
[11]
WANG Xiao-tian,LIANG Xiang-qian,ZHANG Yu-qin.Precise coefficient estimates for close-to-convex harmonic univalent mappings[J].J Math Anal Appl,2001,263(2):501-509.