全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类调和映照的系数估计

DOI: 10.11830/ISSN.1000-5013.2015.04.0484

Keywords: 单叶调和映照, 稳定调和映照, 系数估计, 增长定理

Full-Text   Cite this paper   Add to My Lib

Abstract:

在单叶调和映照的系数猜想的基础上,获得单叶调和映照在第二复伸张满足标准化条件下的系数估计,结果渐进于单叶函数的系数估计,建立了两个猜想的联系,并获得此类映照的增长和覆盖定理.

References

[1]  CLUNIE J G,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A L,1984,9(1):3-25.
[2]  DUREN P.Univalent functions[M].New York:Springer-Verlag,1983:17-21.
[3]  DUREN P.Harmonic mappings in the plane[M].Cambridge:Cambridge University Press,2004:86-110
[4]  de BRANGES L.A proof of the Bieberbach conjecture[J].Acta Math,1985,154(1/2):137-152.
[5]  GREINER P.Geometric properties of harmonic shears[J].Comput Methods Funct Theory,2004,4(1):77-96.
[6]  LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(1):689-692.
[7]  HERNáNDEZ R,MARTíN M J.Stable geometric properties of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[8]  PONNUSAMY S,KALIRAJ A S.On the coefficient conjecture of clunie and sheil-small on univalent harmonic mappings [DB/OL][2014-03-22] .http://arxiv.org/abs/1403.5619.
[9]  ROGOSINSKI W.On the coefficients of subordinate functions[J].Proc London Math Soc,1990,42(1):237-248.
[10]  SHEIL-SMALL T.Constants for planar harmonic mappings[J].J London Math Soc,1990,42(1):237-248.
[11]  WANG Xiao-tian,LIANG Xiang-qian,ZHANG Yu-qin.Precise coefficient estimates for close-to-convex harmonic univalent mappings[J].J Math Anal Appl,2001,263(2):501-509.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133