全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合全局和局部特征的图像特征提取方法

DOI: 10.11830/ISSN.1000-5013.2015.04.0406

Keywords: 特征提取, 线性判别分析, 保局投影算法, 全局特征, 局部特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对图像特征提取无法同时利用样本的全局和局部特征的问题,提出融合全局和局部特征的特征提取方法.该方法充分利用线性判别分析和保局投影算法分别在特征提取中保持样本全局特征和局部特征方面的优势,进一步提高图像特征提取效率.首先,引入全局散度矩阵和局部散度矩阵分别表征样本的全局特征和局部特征.然后,基于同类样本尽可能紧密,异类样本尽可能远离的思想,构造最优化问题.比较实验表明:与传统的主成分分析、线性判别分析、保局投影算法相比,文中方法的工作效率有一定提高.

References

[1]  罗学刚,吕俊瑞,王华军,等.基于超像素的互惠最近邻聚类彩色图像分割[J].广西大学学报:自然科学版,2013,38(2):374-378.
[2]  刘忠宝.基于核的降维和分类方法及其应用研究[D].无锡:江南大学,2012:1-2.
[3]  陈新泉,苏锦细.基于半监督学习的k平均聚类框架[J].广西大学学报:自然科学版,2014,39(5):1074-1082.
[4]  CAMACHO J,PIC J,FERRER A.Data understanding with PCA: Structural and variance information plots[J].Chemometrics and Intelligent Laboratory Systems,2010,100(1):48-56.
[5]  LIPOVETSKY S.PCA and SVD with nonnegative loadings[J].Pattern Recognition,2009,42(1):68-76.
[6]  LEE D D,SEUNG H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
[7]  RADULOVIC J,RANKOVIC V.Feedforward neural network and adaptive network-based fuzzy inference system in study of power lines[J].Expert Systems with Applications,2010,37(1):165-170.
[8]  PETER N B,JOAO P H,DAVID J K,et al.Fisherfaces: Recognition using class specific linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
[9]  HSUAN Y M.Kernel eigenfaces vs kernel fisherfaces: Face recognition using kernel methods[C]//Processing of the 5th IEEE International Conference on Automatic Face and Gesture Recognition.Washington D C:IEEE Press,2002:215-220.
[10]  杜家杰,段会川.MDS在企业客户分类中的应用研究[J].计算机工程与设计,2011,32(5):1658-1660.
[11]  ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[12]  HE Xiao-feng,NIYOGI P.Locality preserving projections[C]//Advances in Neural Information Processing Systems.Vancouver:[s.n.],2003:153-160.
[13]  LOPEZ M M,RAMIREZ J,ALVAREZ I,et al.SVM-based CAD system for early detection of the Alzheimer’s disease using kernel PCA and LDA[J].Neuroscience Letters,2009,464(3):233-238.
[14]  MIKA S,RATSCH G,WESTON J,et al.Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces[J].Pattern Analysis and Machine Intelligence,2003,25(5):623-628.
[15]  BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Processing of Advances in Neural Information Processing Systems.Cambridge:MIT Press,2001:585-591.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133