全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于离群点检测的鲁棒局部切空间排列方法

DOI: 10.11830/ISSN.1000-5013.2008.04.0522

Keywords: 鲁棒, 离群点, 流形学习, 局部切空间排列

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究局部切空间排列方法(LTSA)对离群点的敏感性,提出一种基于离群点检测的鲁棒局部切空间排列方法(RLTSA).该方法用样本点到切空间的投影距离检测离群点.在构造样本点局部邻域时,RLTSA尽可能排除离群点,以构造稳定的局部邻域,而对离群点,RLTSA把它们投影到更高维的切空间,以减少离群点的投影距离.模拟实验和实际例子说明,新方法能提高局部切空间排列方法处理离群样本点的能力.

References

[1]  ZHANG Z, WANG J. MLLE: Modified locally linear embedding using multiple weights [A]. 2007.
[2]  BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering [M]. Cambridge, ma:the Mit Press, 2001.
[3]  CHANG H, YEUNG D Y. Robust locally linear embedding [J]. Pattern Recognition, 2006(6):1053-1065.doi:10.1016/j.patcog.2005.07.011.
[4]  TENENBAUM J, SILVA V D, LANGFORD J. A global geometric framework for nonlinear dimension reduction [J]. Science, 2000.2319-2323.doi:10.1126/science.290.5500.2268.
[5]  ROWEIS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000.2323-2326.
[6]  ZHANG Z, ZHA H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment [J]. SIAM Journal on Scientific Computing, 2005(1):313-338.
[7]  SILVA V, TENENBAUM J B. Global versus local methods in nonlinear dimensionality reduction [M]. Cambridge, ma:the Mit Press, 2003.705-712.
[8]  ZHANG Z, ZHA H. Local linear smoothing for nonlinear manifold learning [R]. PA:Pennsylvania Statue University, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133