CHEN Jing-bo, QIN Meng-zhao. Multi-symplectic Fourier pseudospectral method for the nonlinear Schr?dinger equation [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2001.193-204.
[2]
BRIDGES T J, REICH S. Multi-symplectic integrators:Numerical schemes for Hamiltonian PDEs that conserve symplecticity [J]. Physics Letters A, 2001, (4-5):184-193.
[3]
BRIDGES T J. Multi-symplectic structures and wave propagation [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997.147-190.doi:10.1017/S0305004196001429.
[4]
REICH S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations [J]. Journal of Computational Physics, 2000(5):473-499.
[5]
BRIDGES T J, REICH S. Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations [J]. Physical Review D, 2001():491-504.doi:10.1016/S0167-2789(01)00188-9.
[6]
BOGOLUBSKY L L. Some examples of inelastic solution interaction [J]. Computer Physics Communications, 1977(2):149-155.