??????????????
DOI: 10.11830/ISSN.1000-5013.2014.02.0238
Keywords: w*-??????, ????????, ??????????, ???????, Yosida-Hewitt????
Abstract:
利用向量测度与算子的一一对应关系,给出可列可加测度的算子表示,并进一步由推广的Yosida-Hewitt定理证明定义在B(Ω,Σ)=span^-{χA,A∈Σ}上的取值于自反空间X的算子,可唯一分解成w*-范序列连续算子与纯连续算子之和.
References
[1] | RUDIN W.Functional analysis[M].New York:Mc Graw-Hill Higher Education,1991:117-120.
|
[2] | DINCULEANU N.Linear operations on spaces of totally measurable functions[J].Rev Roumsine Math Pures Appl,1965(10):1493-1524.
|
[3] | GROTHENDIECK A.Sur les applications linéaires faiblement compactes D’espaces du type C(K)[J].Canada J Math,1953(5):129-173.
|
[4] | BARTLE R G,DUNFORD N,SCHWARTZ J.Weak compactness and vector measures[J].Canada J Math,1955(7):289-305.
|
[5] | DIESTEL J,UHL J J J.Vector measures[M].Rhode Island:American Mathematical Soliety,1977:59-186.
|
[6] | DAY M M.Normed linear spaces[M].New York:Springer-Verlag,1973:195-197.
|
[7] | YOSIDA K,HEWITT E.Finitely additive measures[J].Trans Amer Math Soc,1952,72(1):46-66.
|
[8] | DUNFORD N,SCHWARTZ J T.Linear operators part I[M].New York:John-Wiley and Sons,1958:318-319.
|
[9] | CHENG Li-xing,SHI Hui-hua.A functional characterization of measures and the Banach-Ulam problem[J].J Math Anal Appl,2011,374(2):558-565.
|
Full-Text