OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
图的拉普拉斯谱半径对应的特征向量性质及其应用
DOI: 10.11830/ISSN.1000-5013.2014.01.0107
Keywords: 连通图, 树, 拉普拉斯谱半径, 移接变形, 特征向量
Abstract:
研究图的拉普拉斯谱半径对应的特征向量的性质及应用,并得到一些有关图的移接变形对拉普拉斯谱半径影响的结果.
References
[1] | 汪秋分,宋海洲.图谱理论中一些定理的新证明[J].华侨大学学报:自然科学版,2012,33(4):477-480.
|
[2] | 刘亚国.图论中邻接矩阵的应用[J].忻州师范学院学报,2008,24(4):18-19.
|
[3] | 谭尚旺,张德龙.一定条件下图的拉普拉斯矩阵的谱半径[J].广西科学,2008,15(4):352-356.
|
[4] | LI Jian-xi,SHIU Wai-chee,CHAN Wai-hong.The Laplacian spectral radius of some graphs[J].Linear Algebra Appl,2009,431(1):99-103.
|
[5] | WU Bao-feng,XIAO En-li,HONG Yuan.The spectral radius of trees on k pendant vertices[J].Linear Algebra Appl,2005,395(15):343-349.
|
[6] | GUO Ji-ming.The effect on the Laplacian spectral radius of a graph by adding or grafting edges[J].Linear Algebra Appl,2006,413(1):59-71.
|
[7] | 袁西英,吴宝丰,肖恩利.树的运算及其Laplace谱[J].华东师范大学学报:自然科学版,2004,50(2):13-18.
|
[8] | GUO Ji-ming.On the Laplacian spectral radius of a tree[J].Linear Algebra Appl,2003,368(15):379-385.
|
[9] | TAN Shang-wang.On the Laplacian spectral radius of trees[J].Chinese Quarterly Journal of Mathematics,2010,25(4):615-625.
|
[10] | ZHANG Xiao-dong.The Laplacian spectral radii of trees with degree sequences[J].Discrete Mathematics,2008,308(15):3143-3150.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|