OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
调和映照与像域为线性连结的剪切函数的关系
DOI: 10.11830/ISSN.1000-5013.2015.05.0603
Keywords: 调和映照, 线性连结, 调和拟共形映照, α近于凸.
Abstract:
设f(z)=h(z)+g(z)^-为单位圆盘D={z||z|<1}上的局部单叶调和函数,若剪切函数h(z)-g(z)在D上单叶且像域具有M线性连结,研究当伸缩商|ω(z)|=|(g’(z))/(h’(z))|在一定条件下,h(z),Fλ(z)=h(z)+λ×g(z)^- 等函数的单叶性及线性连结性问题,改进推广了陈少林的相应结果.
References
[1] | LEWY H.On the non-vanishing of the jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-698.
|
[2] | CHUAQUI M,HERNANDEZ R.Univalent harmonic mappings and linearly connected domains[J].J Math Anal Appl,2007,33(2):1189-1194.
|
[3] | HUANG Xin-zhong.Locally univalent harmonic mappings with linearly connected image domains[J].Chinese Ann Math Ser A(Chinese),2010,31A(5):625-630.
|
[4] | 王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报:自然科学版,2013,34(2):225-229.
|
[5] | 石擎天,黄心中.调和映照与其剪切函数的单叶性[J].华侨大学学报:自然科学版,2013,34(3):334-338.
|
[6] | HERMáNDEZ R,MARTíN M J.Stable geometric roperities of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
|
[7] | HUANG Xin-zhong.Harmonic quasiconformal mappings on the upper half-plane[J].Complex Variables and Elliptic Equations,2013,58(7):1005-1011.
|
[8] | 夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报:自然科学版,2011,32(2):218-221.
|
[9] | POMMERENKE C.Boundary behaviour of conformal maps[M].Berlin:Springer-Verlag,1992:106-107.
|
[10] | CHEN Shao-lin,PONNUASMY S, RASILA A,et al.Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mappings[EB/OL].[2015-01-05] .http://arxiv.org /abs/1404.4155.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|