SHIH D S, ROBERTSON I M. Hydrogen embrittlement of alpha titanium[J]. Acta Metall,1988,36:111-124.
[2]
HALL I W, HAMMOND C. In situ electron microscopy observations of strain-induced hydrides in α titanium alloy[J]. Metal Science, 1978, 7: 339-342.
[3]
PETIT J,HENAFF G,SARRAZIN-BAUDOUX C. Mechanism and modeling of near-threshold fatigue crack propagation[A]. Fatigue Crack Growth Thresholds, Endurance, Limits and Design[C]. Conshocken PA: ASTM Special Technical Pubication, No.1372, 2000. 3-30.
[4]
PAO P S, FENG C R,GILL S G.Hydrogen-assisted fatigue crack growth in β-annealed Ti-6Al-4V[J]. Scripta Materilia,1998,40(11), 19-26.
[5]
GAO S, et al. Fatigue crack growth for Ti-6Al-4V alloy in water[J].Acta Metallurgica Sinica, 1986,22(6): A195-A200.
[6]
PARIS P C, GOMEZ M P,ANDERSON W P. A rational analytic theory of fatigue[J].The Trend in Engineering, 1961,13: 9-14.
[7]
SURESH S. Fatigue of materials[M].London: Cambridge University Press, 1991. 193-274.
[8]
MOODY N R,COSTA J E,KIM Y W,BOYER R P. Review of microstructure effects on hydrogen-induced sustained load cracking in structural titanium alloys[A]. Proceedings of the Symposium on Microstucture /Property Relationships in Titanium Aluminides and Alloys[C]. 1991. 587-604.
[9]
SASTRY S M L,et al. Subcritical crack-growth under sustained load in Ti-6Al-6V-2Sn[J]. Metall Trans A, 1981,12A:83-94.
[10]
ISHIYAMA S,FUKAYA K,ETO M,MIYA N.Metal-hydride characterization and mechanical properties of Ti-6Al-4V alloy[J]. Journal of Nuclear Science and Technology, 2000, (37)2: 144-152.
[11]
YEH M S, et al. Hydrogen-induced subcritical crack growth in Ti-6Al-4V alloy[J]. Mat Sci and Eng A, 1998, 242: 96.