FUJII H. Continuous cooling transformation characteristics of α+β titanium alloys [J]. Nippon Steel Technical Report, 1994, 62(7):74-79.
[2]
LUO J, LI M Q, YU W X. Microstructure evolution during high temperature deformation of Ti-6Al-4V alloy [J]. Rare Metal Materials and Engineering, 2010, 39(8): 1323-1328.
[3]
WANG K L, LU S Q, FU M W, et al. Identification of the optimal (α + β) forging process parameters of Ti-6.5Al-3.5Mo-15Zr-0.3Si based on processing-maps [J]. Materials Science and Engineering A, 2010, 527(27-28): 7279-7285.
[4]
SUN Z C, YANG H. Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming [J]. Materials Science and Engineering A, 2009, 523(1-2): 184-192
[5]
鲍利索娃E A. 钛合金金相学 [M] . 陈石卿,译. 北京: 国防工业出版社, 1986.
[6]
EVANS W J. Optimizing mechanical properties in alpha + beta titanium alloys [J]. Materials Science and Engineering A, 1998, 243(1-2):89-96.
ZENG L, BIELER T R. Effects of working, heat treatment, and aging, on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti-6Al-4V wire [J]. Materials Science and Engineering A, 2005, 392(1-2): 403-414.
[10]
王金友, 葛志明, 周彦邦. 航空用钛合金 [M].上海:上海科学技术出版社,1985.
[11]
CAMPBELL F C. Manufacturing technology for aerospace structural materials [M]. London: Elsevier Science, 2006.
[12]
FILIP R, KUBIAK K, ZIAJIA W. The effect of microstructure on the mechanical properties of two-phase titanium alloys [J]. Journal of Materials Processing Technology, 2003, 133(1-2): 84-89.