GODFINE N,ZILBERSTEIN V,WASHABAUGH A et al.Eddy current sensor networks for aircraft fatigue monitoring[J].Materials Evaluation,2003,61(7):852-859.
[2]
YE D Y,MATSUOKA S,NAGASHIMA N,et al.The low-cycle fatigue deformation and final fracture behaviour of an austenitic stainless steel[J].Materials Science and Engineering: A,2006,415(1-2):104-117.
[3]
HEINO S,KARLSSON B.Cyclic deformation and fatigue behaviour of 7Mo-0.5N superaustenitic stainless steel-stress-strain relation and fatigue life[J].Acta Materials,2001,49(2):339-351.
GODFINE N,CLARK D.Introduction to the meandering winding magnetometer (MWM) and the grid measurement approach[J].Nondestructive Evaluation of Materials and Composites,1996,2944:186-192.
[6]
ZILBERSTEIN V,SCHLICKER D,WALRATH K,et al.MWM eddy current sensors for monitoring of crack initiation and growth during fatigue test and in service[J].International Journal of Fatigue,2001,23 (S1):477-485.
[7]
YANG Q,LUO J L.Martensite transformation and surface cracking of hydrogen charged and outgassed type 304 stainless steel[J].Materials Science and Engineering: A,2000,288(1):75-83.
[8]
GROSSE M,NIFFENEGGER M,KALKHOF D.Monitoring of low-cycle fatigue degradation in X6CrNiTi18-10 austenitic steel[J].Journal of Nuclear Materials,2001,296:305-311.
[9]
GROSSE M,KALKHOF D,NIFFENEGGER M,et al.Influencing parameters on martensite transformation during low cycle fatigue for steel AISI 321[J].Materials Science and Engineering: A,2006,437(S1):109-113.
[10]
STOLARZ J,BAFFIE N,MAGNIN T.Fatigue short crack behaviour in metastable austenitic stainless steels with different grain sizes[J].Materials Science and Engineering: A,2001,319(S1):521-526.
[11]
ROTH I,KUBBELER M,KRUPP U,et al.Crack initiation and short crack growth in metastable austenitic stainless steel in the high cycle fatigue regime[J].Procedia Engineering,2010,2(1):941-948.