KIM C S,MASSA T R,ROHRER G S. Modeling the relationship between microstructural features and the strength of WC-Co composites[J]. International Journal of Refractory Metals & Hard Materials,2006,24(1-2):89-100.
[2]
XU Z H,AGREN J. A modified hardness model for WC-Co cemented carbides[J]. Materials Science and Engineering A,2004,386(1-2):262-268.
[3]
HONLE S, SCHMAUDER S. Micromechanical simulation of crack growth in WC/Co using embedded unit cells[J]. Computational Materials Science,1998,13(1-3):56-60.
[4]
VEPREK R G,PARKS D M. Non-linear finite element constitutive modeling of mechanical properties of hard and superhard materials studied by indentation[J]. Materials Science and Engineering A,2006,422(1-2):205-217.
[5]
SADOWSKI T,NOWICKI T. Numerical investigation of local mechanical properties of WC-Co composite[J]. Computational Materials Science,2008,43(1):235-241.
[6]
RONALD W A. The hardness and strength properties of WC-Co composites[J]. Materials,2011,4(7):1287-1308.
[7]
PARK S,KAPOOR S G, DEVOR R E. Microstructure-level model for the prediction of tool failure in WC-Co cutting tool materials[J]. Journal of Manufacturing Science and Engineering,2006,128(3):739-748.
[8]
CHUZHOY L,DEVOR R E,KAPOOR S G. Microstructure-level modeling of ductile iron machining[J]. Journal of Manufacturing Science and Engineering,2002,124(2):162-169.
SUNGHYUK P. Development of a microstructure-level finite element model for the prediction of tool failure by chipping in WC-Co systems. Illinois:The University of Illinois at Urbana-Champaign,2007.