全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2013 

板条状马氏体形貌和惯习面的3DEBSD分析

DOI: 10.3969/j.issn.1001-4381.2013.04.014, PP. 74-80

Keywords: 高锰钢,3D-EBSD-FIB,板条状马氏体,三维立体形貌,惯习面

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用3DEBSD-FIB(threedimensionalelectronbackscatterdiffraction-focusedionbeam)技术,以高锰钢为实验材料,构建晶粒三维立体形貌,并对马氏体惯习面进行观察分析。结果表明热致板条状马氏体表面平直,接近马氏体的{110}α,惯习面平行于奥氏体的{225}γ,其初始形核及后期生长均在{225}γ上进行;而形变诱发形成的板条状马氏体表面和惯习面分布近于{021}α和{225}γ,初始形核和前期生长沿{225}γ,后期生长沿{111}γ,由于外加应力,其表面发生弯曲变形,形核时间不同,偏离{225}γ-{111}γ程度不同。

References

[1]  ROWENHORST D J,GUPTA A, FENG C R, et al. Crystallographic and morphological analysis of coarse martensite: combining EBSD and serial sectioning[J]. Scr Mater,2006,55(1):11-16.
[2]  吴开明. 连续截面和计算机辅助重建法观察Fe-0.28C-3.0Mo合金钢退化铁素体的三维形貌[J].金属学报,2005,41(12):1237-1242.WU K M. 3-D morphology observation of degenerate ferrite in steel Fe-0.28C-3.0Mo using serial sectioning and computer-aided reconstruction[J]. Acta Metall Sin,2005,41(12):1237-1242.
[3]  ZAAFARANI N, RAASBE D, SINGH R N, et al. Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations[J]. Acta Mater,2006,54(7):1863-1876.
[4]  XU W, FERRY M, MATEESCU N, et al. Techniques for generating 3-D EBSD microstructures by FIB tomography[J].Mater Charact,2007,58(10):961-967.
[5]  NAVE M D, MULDERS J J L, GHOLIN I A. Twin characterisation using 2D and 3D EBSD[J].Chin J Stereol Image Anal,2005,10(4):199-204.
[6]  CALCAGNOTTO M, PONGE D, DEMIR E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[J]. Mater Sci Eng:A,2010,527(10-11):2738-2746.
[7]  KONRAD J, ZAEFFERER S, RAABE D. Investigation of orientation gradients around a hard laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique[J].Acta Mater,2006,54(5):1369-1380.
[8]  GROEBER M A, HALEY B K, UCHIC M D, et al. 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system[J]. Mater Charact,2006,57(4-5): 259-273.
[9]  WIRTH R. Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chem Geol,2009,261(3-4):217-229.
[10]  BHANDARI Y, SARKAR S, GROEBER M, et al. 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis[J].Comput Mater Sci,2007,41(2):222-235.
[11]  BERNARD D, GENDRON D, HEINTZ J M, et al.First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography[J].Acta Mater,2005,53(1):121-128.
[12]  D?BRICH K M, RAU C, KRILL C E. Quantitative characterization of the three-dimensional microstructure of polycrystalline Al-Sn using X-ray microtomography[J].Metall Mater Trans A,2004,35(7):1953-1961.
[13]  KRAL M V, SPANOS G. Three-dimensional analysis and classification of grain-boundary-nucleated proeutectoid ferrite precipitates[J]. Metall Mater Trans A,2005,36(5):1199-1207.
[14]  KUBIS A J, SHIFLET G J, DUNN N D, et al. Focused ion-beam tomography[J].Metall Mater Trans A,2004,35(7):1935-1943.
[15]  LUND A C, VOORHEES P W. A quantitative assessment of the three-dimensional microstructure of a γ-γ' alloy[J].Phil Mag,2003,83(14):1719-1733.
[16]  LEWIS A C, BINGERT J F, ROWENHORST D J, et al. Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel[J].Mater Sci Eng:A,2006,418(1-2):11-18.
[17]  ABOU-RAS D, MARSEN B, RISSOM T, et al. Enhancements in specimen preparation of Cu(In,Ga)(S,Se)2 thin films[J]. Micron,2012,43(2-3):470-474.
[18]  BACHMANN F, HIELSCHER R, SCHEABEN H. Grain detection from 2d and 3d EBSD data-specification of the MTEX algorithm[J]. Ultramicroscopy,2011,111(12):1720-1733.
[19]  PURA J, KWASNIAK P, JAKUBOWSKA D, et al. Investigation of degradation mechanism of palladium-nickel wires during oxidation of ammonia[J]. Catal Today, . http://dx.doi.org/10.1016/j.ultramic.2011.08.002.
[20]  GHOSH S, BHANDARI Y, GROEBER M. CAD-based reconstruction of 3D polycrystalline alloy microstructures from FIB generated serial sections[J]. Comput Aided Des,2008,40(3):293-310.
[21]  DUNNE D P, BOWLES J S. Measurement of the shape strain for the (225) and (259) martensitic transformations[J].Acta Metall,1969,17(3):201-212.
[22]  DAUTOVICH D P, BOWLES J S. The orientation relationship of the (225)F martensitic transformation in an Fe-Mn-C alloy[J].Acta Metall,1972,20(10):1137-1142.
[23]  KELLY P M. Martensite crystallography—the role of the shape strain[J].Mater Sci Eng:A,2006,438-440:43-47.
[24]  ZHANG X M, GAUTIER E, SIMON A. Martensite morphology and habit plane transitions during tensile tests for Fe-Ni-C alloys[J].Acta Metall,1989,37(2):477-485.
[25]  LIN F X, GODFREY A, JENSEN D J, et al. 3D EBSD characterization of deformation structures in commercial purity aluminum[J]. Mater Charact,2010,61(11):1203-1210.
[26]  栾军华, 刘国权, 王浩. 纯Fe试样中晶粒的三维可视化重建[J]. 金属学报,2011,47(1): 69-73.LUAN J H, LIU G Q, WANG H. Three-dimensional reconstruction of grains in pure iron specimen[J]. Acta Metall Sin, 2011,47(1):69-73.
[27]  HARA T, TSUCHIYA K, TSUZAKI K, et al. Application of orthogonally arranged FIB-SEM for precise microstructure analysis of materials[J]. J Alloys Compd, . http://dx.doi.org/10.1016/j.jallcom.2012.02.019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133