WANG Y M, CHEN M W, ZHOU F H, et al. High tensile ductility in a nanostructured metal[J]. Nature,2002,419(6910): 912-915.
[2]
MA E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals[J]. Scripta Materialia,2003,49(7):663-668.
[3]
WANG Y M, MA E. Three strategies to achieve uniform tensile deformation in a nanostructured metal[J]. Acta Materialia,2004,52(6):1699-1709.
[4]
FANG T H, LI W L, TAO N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science,2011,331(6024):1587-1590.
[5]
YANG D K, HODGSON P D, WEN C E. Simultaneously enhanced strength and ductility of titanium via multimodal grain structure[J]. Scripta Materialia,2010,63(9):941-944.
[6]
ZHAO Y, TOPPING T, BINGERT J F, et al. High tensile ductility and strength in bulk nanostructured nickel[J]. Advanced Materials,2008,20(16):3028-3033.
[7]
RAMTANI S, DIRRAS G. A bimodal bulk ultra-fine-grained nickel: experimental and micromechanical investigations[J]. Mechanics of Materials,2010,42(5):522-536.
[8]
ZHANG X F, FUJITA T, PAN D, et al. Influences of grain size and grain boundary segregation on mechanical behavior of nanocrystalline Ni[J]. Materials Science and Engineering:A, 2010,527(9):2297-2304.
[9]
CHOKSHI A H, MUKHERJEE A K. A topological study of superplastic deformation in an Al-Li alloy with a bimodal grain size distribution[J]. Metallurgical Transactions,1988,19(6):1621-1624.
[10]
HAYES R W, RODRIGUEZ R. The mechanical behavior of a cryomilled Al-10Ti-2Cu alloy[J]. Acta Materialia,2001,49(19):4055-4068.
[11]
LEE Z, RADMILOVIC V, AHN B, et al. Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy[J]. Metallurgical and Materials Transactions A,2009,41(4):795-801.
[12]
TELLKAMP V L, LAVERNIA E J, MELMED A. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy[J]. Metallurgical and Materials Transactions A,2001,32(9):2335-2343.
[13]
HOSSEINI S M, NAJAFIZADEH A, KERMANPUR A. Producing the nano/ultrafine grained low carbon steel by martensite process using plane strain compression[J]. Journal of Materials Processing Technology,2011,211(2):230-236.
[14]
JIA D, RAMESH K T, MA E. Failure mode and dynamic behavior of nanophase iron under compression[J]. Scripta Materialia,1999,42(1):73-78.
[15]
KIM K B, DAS J, BAIER F, et al. Propagation of shear bands in Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite during deformation[J]. Applied Physics Letters,2005,86(17):171909-171911.
[16]
LEE Z, RADMILOVIC V, AHN B, et al. Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy[J]. Metallurgical and Materials Transactions A,2010,41(4):795-801.
[17]
夏少华. 微米晶/超细晶复合增塑及其机制研究.南京:南京理工大学.2010.
[18]
LA P Q, WEI Y P, YANG Y, et al. Effect of annealing on microstructure and mechanical properties of bulk nanocrystalline Fe3Al alloy with 5 wt.% Cu prepared by aluminothermic reaction[J]. Materials Science and Engineering:A,2011,528(24):7140-7148.
[19]
GLEITER H, MARQUARDT P. Nanocrystalline structures—an approach to new materials?[J]. Zeitschrift Fur Metallkunde, 1984,75(4):263-267.
KOCH C C. Nanostructured Materials: Processing, Properties, and Applications[M]. Norwich:William Andrew Pub,2007.
[22]
WEERTMAN J, FARKAS D, HEMKER K, et al. Structure and mechanical behavior of bulk nanocrystalline materials[J]. Mrs Bulletin,1999,24(2):44-50.
[23]
TELLKAMP V L, MELMED A, LAVERNIA E J. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy[J]. Metallurgical and Materials Transactions A, 2001,32(9):2335-2343.
[24]
HAYES R W, RODRIGUEZ R, LAVERNIA E J. The mechanical behavior of a cryomilled Al-10Ti-2Cu alloy[J]. Acta Materialia,2001,49(19):4055-4068.
[25]
SEMIATIN S L, JATA K V, UCHIC M D, et al. Plastic flow and fracture behavior of an Al-Ti-Cu nanocomposite[J]. Scripta Materialia,2001,44(3):395-400.
[26]
WITKIN D. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility[J]. Scripta Materialia,2003,49(4):297-302.
[27]
LEE D G, LEE Y H, LEE C S, et al. Effects of volume fraction of tempered martensite on dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure[J]. Metallurgical and Materials Transactions A,2005,36(3):741-748.
[28]
LUI E W, XU W, WU X, et al. Multiscale two-phase Ti-Al with high strength and plasticity through consolidation of particles by severe plastic deformation[J]. Scripta Materialia,2011,65(8):711-714.
[29]
XIA S, VYCHIGZHANINA L, WANG J, et al. Controllable bimodal structures in hypo-eutectoid Cu-Al alloy for both high strength and tensile ductility[J]. Materials Science and Engineering:A,2008,490(1-2):471-476.
[30]
XIA S H, WANG J T. A micromechanical model of toughening behavior in the dual-phase composite[J]. International Journal of Plasticity,2010,26(10):1442-1460.
[31]
AZIZI-ALIZAMINI H, MILITZER M, POOLE W J. A novel technique for developing bimodal grain size distributions in low carbon steels[J]. Scripta Materialia,2007,57(12):1065-1068.
[32]
VAN SWYGENHOVEN H, DALLA TORRE F, VICTORIA M. Nanocrystalline electrodeposited Ni: microstructure and tensile properties[J]. Acta Materialia,2002,50(15):3957-3970.
[33]
DA-WEI W, HAI-BO J, JIE Y, et al. Mechanical reinforcement and piezoelectric properties of PZT ceramics embedded with nano-crystalline[J]. Chinese Physics Letters,2010,27:047701.
[34]
HAN B Q, LEE Z, WITKIN D, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys[J]. Metallurgical and Materials Transactions A,2005,36(4):957-965.
[35]
WEN C E, YANG D K, HODGSON P D. Simultaneously enhanced strength and ductility of titanium via multimodal grain structure[J]. Scripta Materialia,2010,63(9):941-944.
[36]
WANG J T, XIA S H, VYCHIGZHANINA L V, et al. Controllable bimodal structures in hypo-eutectoid Cu-Al alloy for both high strength and tensile ductility[J]. Materials Science and Engineering:A,2008,490(1-2):471-476.