BAGHBANZADEH M, CARBONE L, COZZOLI P D, et al. Microwave-assisted synthesis of colloidal inorganic nanocrystals[J]. Angew Chem Int Ed, 2011, 50(48): 11312-11359.
[2]
YAN Jun, WEI Tong, QIAO Wen-ming, et al. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors[J]. Electrochimica Acta, 2010, 55(23): 6973-6978.
[3]
ZHU Xian-jun, ZHU Yan-wu, MURALI S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano, 2011, 5(4): 3333-3338.
[4]
ZHANG Ming, LEI Dan-ni, YIN Xiao-ming, et al. Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries[J]. J Mater Chem, 2010, 20(26): 5538-5543.
[5]
ZHOU Guang-min, WANG Da-wei, LI Feng, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chem Mater, 2010, 22(18): 5306-5313.
[6]
YANG Hong-bin, GUAI Guan-hong, GUO Chun-xian, et al. NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell[J]. J Phys Chem C, 2011, 115(24): 12209-12215.
WANG Dong-hai, KOU Rong, CHOI D, et al. Ternary self-assembly of ordered metal oxide graphene nanocomposites for electrochemical energy storage[J]. ACS Nano, 2010, 4(3):1587-1595.
[9]
CONG Huai-ping, HE Jia-jun, LU Yang, et al. Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications[J]. Small, 2010, 6(2):169-173.
[10]
张燕玲. 纳米材料及其磁功能化组装的研究[D]. 上海:东华大学,2011.
[11]
HE Fu-an, FAN Jin-tu, MA Dong, et al. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding[J]. Carbon, 2010, 48(11): 3139-3144.
[12]
LI Ying, CHU Jia, QI Jing-yao, et al. An easy and novel approach for the decoration of graphene oxide by Fe3O4 nanoparticles[J]. Applied Surface Science, 2011, 257(14): 6059-6062.
[13]
PHAM T A, KUMAR N A, JEONG Y T. Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles[J]. Synthetic Metals, 2010, 160(17-18): 2028-2036.
[14]
ZHANG Yi, CHEN Biao, ZHANG Li-ming, et al. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide[J]. Nanoscale, 2011, 3(4): 1446-1450.
[15]
KUILA T, BOSE S, HONG C E, et al. Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method[J]. Carbon, 2011, 49 (3): 1033-1051.
[16]
ZHAN Ying-qing, ZHAO Rui, LEI Ya-jie, et al. Preparation, characterization and electromagnetic properties of carbon nanotubes/Fe3O4 inorganic hybrid material[J]. Applied Surface Science, 2011,257(9): 4524-4528.
[17]
LIU Yi-lun, XIE Bo, XU Zhi-ping. Mechanics of coordinative crosslinks in graphene nanocomposites: a first-principles study[J]. J Mater Chem, 2011, 21(18): 6707-6712.
[18]
WANG Yan-min, LI Ting-xi, ZHAO Li-feng, et al. Research progress on nanostructured radar absorbing materials[J]. Energy and Power Engineering, 2011, 3(4):580-584.
[19]
MICHELI D, APOLLO C, PASTORE R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science and Technology, 2010, 70(2): 400-409.
[20]
TONG Guo-xiu, WU Wen-hua, QIAO Ru, et al. Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials[J]. Journal of Materials Research, 2011, 26(13): 1639-1645.
[21]
ZHAN Ying-qing, MENG Fan-bin, LEI Ya-jie, et al. One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties[J]. Materials Letters, 2011, 65(11): 1737-1740.
[22]
ZHAN Ying-qing, MENG Fan-bin, YANG Xu-lin, et al. Solvothermal synthesis and characterization of functionalized graphene sheets (FGSs)/magnetite hybrids[J]. Materials Science and Engineering B, 2011, 176(16): 1333-1339.
[23]
李国显,王涛,薛海荣,等. 石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J]. 航空学报, 2011, 32(9): 1732-1739. LI Guo-xian, WANG Tao, XUE Hai-rong, et al. Synthesis and electromagnetic wave absorption properties of graphene/Fe3O4 composite materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1732-1739.
[24]
方建军,李素芳,查文珂,等. 镀镍石墨烯的微波吸收性能[J]. 无机材料学报,2011, 26(5): 467-471. FANG J J, LI S F, ZHA W K, et al. Microwave absorbing properties of nickel-coated graphene[J]. Journal of Inorganic Materials, 2011, 26(5): 467-471.
[25]
GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[26]
GEIM A K, MACDONALD A H. Graphene: exploring carbon flatland[J]. Physics Today, 2007, 60(8): 35-41.
[27]
LOH K P, BAO Q L, ANG P K, et al. The chemistry of graphene[J]. Journal of Materials Chemistry, 2010, 20(12): 2277-2289.
[28]
MIKHAILOV S A. Electromagnetic response of electrons in graphene: non-linear effects[J]. Physica E, 2008, 40(7): 2626-2629.
[29]
RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777.
[30]
GREEN A A, HERSAM M C. Solution phase production of graphene with controlled thickness via density differentiation[J]. Nano Letter, 2009, 9(12): 4031-4036.
[31]
OWEN C C, BONNY J, DMITRIY A D, et al. Chemically active reduced graphene oxide with tunable C/O ratios[J]. ACS Nano, 2011, 5(6): 4380-4391.
[32]
VITCHEV R, MALESEVIC A, PETROV R H, et al. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition[J]. Nanotechnology, 2010, 21(9): 095602.
[33]
BERGER C, SONG Z M, LI T B, et al. Ul-trathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108(52): 19912-19916.
[34]
SHAFRANJUK S E. Electromagnetic properties of the graphene junctions[J]. Eur Phys J B, 2011, 80(3): 379-393.
[35]
WANG Chao, HAN Xi-jiang, XU Ping, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98(7): 072906.
[36]
GIOVANNI D B, ALESSIO T, ADRIAN D, et al. Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency[J]. Carbon, 2011, 49(13): 4291-4300.
[37]
RUIZ-HITZKY E, DARDER M, FERNANDES F M, et al. Supported graphene from natural resources: easy preparation and applications[J]. Adv Mater, 2011, 23(44): 5250-5255.
VIRENDRA S, DAEHA J, LEI Z, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8): 1178-1271.
[40]
PATZKE G R, ZHOU Y, KONTIC R, et al. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations[J]. Angewandte Chemie International Edition, 2010, 50(4): 826-859.
[41]
SHI Wen-hui, ZHU Ji-xin, SIM D H, et al. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites[J].J Mater Chem,2011,21(10):3422-3427.
[42]
ZHU Ji-xin, SHARMA Y K, ZENG Zhi-yuan, et al. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes[J]. J Phys Chem C, 2011, 115(16): 8400-8406.
[43]
CHANG Kun, CHEN Wei-xiang. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion Batteriesw[J]. Chem Commun, 2011, 47(14): 4252-4254.
[44]
FU Yong-sheng, WANG Xin. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation[J]. Ind Eng Chem Res, 2011, 50(12): 7210-7218.
[45]
NI Shi-bing, WANG Xing-hui, ZHOU Guo, et al. Designed synthesis of wide range microwave absorption Fe3O4-carbon sphere composite[J].J Alloys Compd,2010,489(1):252-256.
[46]
王晨, 康飞宇, 顾家琳. 铁钴镍合金粒子/石墨薄片复合材料的制备与吸波性能研究[J]. 无机材料学报,2010, 25(4): 406-410. WANG C, KANG F Y, GU J L. Synthesis and microwave absorbing properties of FeCoNi alloy particles/graphite flaky composites [J]. Journal of Inorganic Materials, 2010, 25(4): 406-410.
[47]
DIONNE G F. Magnetic Oxides[M]. New York: Springer Science+Business Media, 2009.
[48]
DU A J, NG Y H, BELL N J, et al. Hybrid graphene/titania nanocomposite: interface charge transfer, hole doping, and sensitization for visible light response[J]. J Phys Chem Lett, 2011, 2(8): 894-899.
[49]
DU A J, SMITH S C. Electronic functionality in graphene-based nanoarchitectures: discovery and design via first-principles modeling[J]. J Phys Chem Lett, 2011, 2(2): 73-80.